Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

GENDER EFFECTS ON TRACE ELEMENT STATUS IN CHILDREN WITH DOWN’S SYNDROME

DOI: https://doi.org/10.29296/25877313-2018-07-08
Download full text PDF
Issue: 
7
Year: 
2018

A.R. Grabeklis Ph.D. (Biol.), Yaroslavl State University; Senior Lecturer, Peoples’ Friendship University of Russia (Moscow) E-mail: andrewgrabeklis@gmail.com I.V. Zhegalova Student, I.M. Sechenov First Moscow State Medical University; Laboratory Assistant, Peoples’ Friendship University of Russia (Moscow) A.A. Skalnaya Student, M.V. Lomonosov Moscow State University A.L. Mazaletskaya Ph.D. (Psych.), Yaroslavl State University S.A. Simakova Student, Yaroslavl State University M.G. Skalnaya Dr. Sc. (Med.), Professor, Peoples’ Friendship University of Russia (Moscow)

The objective of the present study was to assess gender effects on the levels of essential and toxic chemical elements in hair of children with Down’s syndrome. It has been revealed that hair phosphorus in boys and girls with Down’s syndrome exceeded the con-trol values by 36% (p < 0,001) and 30% (p < 0,001), respectively. Boys were also characterized by increased hair magnesium con-tent. At the same time, hair zinc in boys and girls suffering from Down’s syndrome was 54% (p = 0,021) and 109% (p = 0,085) high-er as compared to the control levels. Girls with the syndrome were characterized by higher hair chromium and silicon levels. In con-trast to other metals, in boys and girls with Down’s syndrome hair mercury levels were decreased by a factor of more than 2 (p = 0,088) and 3 (p = 0,031), whereas hair content of lead and arsenic was elevated in boys and girls, respectively. Two-way ANOVA demonstrated a significant factorial interaction (gender*syndrome) only in the case of Cr (p = 0,030) and Hg (p = 0,031). Therefore, the results of the study indicate a possible pathogenic role of trace element imbalance in Down’s syndrome.

Keywords: 
Down’s syndrome
children
phosphorus
metals
hair

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Dierssen M. Down syndrome: The brain in trisomic mode // Nat. Rev. Neuro-sci. 2012; 13:844–858. doi:10.1038/nrn3314.
  2. Loane M., Morris J.K., Addor M.C., et al. Twenty-year trends in the prevalence of Down syndrome and other trisomies in Europe: Impact of maternal age and prena-tal screening // Eur. J. Hum. Genet. 2013; 21:27–33. doi:10.1038/ejhg.2012.94.
  3. Roizen N.J., Patterson D. Down’s syndrome // Lancet. 2003; 361:1281–89. doi:10.1016/s0140-6736(03)12987-x.
  4. Asim A., Kumar A., Muthuswamy S., et al. Down syndrome: an insight of the disease // J. Biomed. Sci. 2015; 22:41. doi:10.1186/s12929-015-0138-y.
  5. Melville C.A., Cooper S.A., McGrother C.W., et al. Obesity in adults with Down syndrome: A case-control study // J. Intellect. Disabil. Res. 2005; 49:125–33. doi:10.1111/j.1365-2788.2004.00616.x.
  6. Samarkandy M.M., Mohamed B.A., Al-Hamdan A.A. Nutritional assessment and obesity in Down syndrome children and their siblings in Saudi Arabia // Saudi Med. J. 2012; 33:1216–1221. doi:20120326’ [pii].
  7. Grammatikopoulou M.G., Manai A., Tsigga M., et al. Nutrient intake and anthropometry in children and adolescents with Down syndrome-a preliminary study // Dev. Neurorehabil. 2008; 11:260–267. doi:10.1080/17518420802525526.
  8. Ani C., Grantham-McGregor S., Muller D. Nutritional supplementation in Down syndrome: Theoretical considera-tions and current status // Dev. Med. Child Neurol. 2000; 42:207–213. doi:10.1017/S0012162200000359.
  9. Salman M.S. Systematic review of the effect of therapeutic dietary supple-ments and drugs on cognitive function in subjects with Down syndrome // Eur. J. Paediatr. Neurol. 2002; 6:213–219. doi:10.1053/ejpn.2002.0596.
  10. Mégarbané A., Ravel A., Mircher C., et al. The 50th anniversary of the discovery of trisomy 21: the past, present, and future of research and treatment of Down syndrome // Genet. Med. 2009; 11:611–616. doi:10.1097/GIM.0b013e3181b2e34c.
  11. Skal'nyj A.V. Issledovanie vli-janija hronicheskoj alkogol'noj intok-sikatsii na obmen tsinka, medi i litija v organizme: Avtoref. diss. … kand. med. nauk. M. 1990. 137 s. (Skalny A.V. Issledovanie vliyaniya hronicheskoj alko-gol’noj intoksikacii na obmen cinka, medi i litiya v or-ganizme: Avtoref. diss. … kand. med. nauk. M. 1990. 137 s.).
  12. Semenov A.S., Skal'nyj A.V. Im-munopatologicheskie i patobiohimiche-skie aspekty patogeneza perinatal'nogo porazhenija mozga. SPb: Nauka. 2009. 368 s. (Semenov A.S., Skal’nyj A.V. Im-munopatologicheskie i patobiohimicheskie aspekty patogeneza perinatal’nogo pora-zheniya mozga. SPb: Nauka. 2009. 368 s.)
  13. Baptista F., Varela A., Sardinha L.B. Bone mineral mass in males and females with and without Down syndrome // Osteoporos. Int. 2005; 16:380–388. doi:10.1007/s00198-004-1687-1.
  14. McKelvey K.D., Fowler T.W., Akel N.S., et al. Low bone turnover and low bone density in a cohort of adults with Down syndrome // Osteoporos. Int. 2013; 24:1333–1338. doi:10.1007/s00198-012-2109-4.
  15. García-Hoyos M., Riancho J.A., Valero C. Bone health in Down syndrome // Med. Clínica (English Ed). 2017; 149:78–82. doi:10.1016/j.medcle.2017.06.024.
  16. Stagi S., Lapi E., Romano S., et al. Determinants of vitamin D levels in chil-dren and adolescents with Down syn-drome // Int. J. Endocrinol. 2015. doi:10.1155/2015/896758.
  17. Oberlis D., Harland B.F., Skal'-nyj A.V. Biologicheskaja rol' makro- i mikroelementov u cheloveka i zhivot-nyh. SPb: Nauka. 2008. 542 s. (Oberlis D., Harland B.F., Skalny A.V. Biolog-icheskaya rol’ makro- i mikroehlementov u cheloveka i zhivotnyh. SPb: Nauka. 2008. 542 s.).
  18. Marger L., Schubert C.R., Bertrand D. Zinc: An underappreciated modulatory factor of brain function // Biochem. Phar-macol. 2014; 91:426–435. doi:10.1016/j.bcp.2014.08.002.
  19. Marques R.C., de Sousa A.F., do Monte S.J.H., et al. Zinc nutritional status in adolescents with Down syndrome // Bi-ol. Trace Elem. Res. 2007; 120:11-18.
  20. Lima A.S., Cardoso B.R., Cozzolino S.F. Nutritional status of zinc in children with down syndrome // Biol. Trace Elem. Res. 2010; 133:20–28. doi:10.1007/s12011-009-8408-8.
  21. Li L.B., Wang Z.Y. Disruption of brain zinc homeostasis promotes the path-ophysiological progress of Alzheimer’s disease // Histol. Histopathol. 2016; 31:623–627. doi:10.14670/HH-11-737.
  22. Olechnowicz J., Tinkov A., Skalny A., et al. Zinc status is associated with in-flammation, oxidative stress, lipid, and glucose metabolism // J. Physiol. Sci. 2017. doi:10.1007/s12576-017-0571-7.
  23. Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis // Mol. Cell. Biochem. 2010; 338:241–254. doi:10.1007/s11010-009-0358-0.
  24. Nourmohammadi R.F. Zinc Hair Concentration in Children Suffering from Down Syndrome, Cerebral Palsy, Macro-cephaly and Hydrocephaly // Iran. J. Psy-chiatry Clin. Psychol. 2003 8:83–88.
  25. Yenigun A., Ozkinay F., Cogulu O., et al. Hair zinc level in Down syndrome // Downs. Syndr. Res. Pract. 2004; 9:53–57. doi:10.3104/reports.292.
  26. Vincent J.B. Is chromium pharma-cologically relevant? // J. Trace Elem. Med. Biol. 2014; 28:397–405. doi:10.1016/j.jtemb.2014.06.020.
  27. Heinitz M.F. Alzheimer’s disease and trace elements: chromium and zinc // J. Orthomol. Med. 2005; 20:89–92.
  28. Tinkov A.A., Popova E.V., Polyako-va V.S., et al. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats // J. Trace Elem. Med. Biol. 2015; 29:176–181. doi:10.1016/j.jtemb.2014.07.006.
  29. Krikorian R., Eliassen J.C., Boespflug E.L., et al. Improved cognitive-cerebral function in older adults with chromium supplementation // Nutr. Neu-rosci. 2010; 13:116–22. doi:10.1179/147683010X12611460764084.
  30. Domingo J.L., Gómez M., Colomina M.T. Oral silicon supplementation: An ef-fective therapy for preventing oral alumi-num absorption and retention in mammals // Nutr. Rev. 2011; 69:41–51. doi:10.1111/j.1753-4887.2010.00360.x.
  31. Davenward S., Bentham P., Wright J., et al. Silicon-rich mineral water as a non-invasive test of the “aluminum hy-pothesis” in Alzheimer’s disease // J. Alz-heimer’s Dis. 2013; 33:423–30. doi:10.3233/JAD-2012-121231.
  32. Oxelgren U.W., Myrelid Å., Annerén G., et al. Prevalence of autism and attention-deficit–hyperactivity disorder in Down syndrome: a population-based study // Dev. Med. Child Neurol. 2017; 59:276–83. doi:10.1111/dmcn.13217.
  33. Kern J.K., Geier D.A., Sykes L.K., et al. The relationship between mercury and autism: A comprehensive review and dis-cussion // J. Trace Elem. Med. Biol. 2016; 37:8–24. doi:10.1016/j.jtemb.2016.06.002.
  34. Mostafa G.A., Bjørklund G., Urbina M.A., et al. The levels of blood mercury and inflammatory-related neuropeptides in the serum are correlated in children with autism spectrum disorder // Metab. Brain Dis. 2016; 31:593–99.
  35. Kern J.K., Grannemann B.D, Trivedi M.H., et al. Sulfhydryl-reactive metals in autism // J. Toxicol. Environ. Heal. Part A Curr. Is. 2007; 70:715–721. doi:10.1080/15287390601188060.
  36. Bihaqi S.W., Huang H., Wu J., et al. Infant exposure to lead (Pb) and epigenetic modifications in the aging primate brain: Implications for Alzheimer’s disease // J. Alzheimer’s Dis. 2011; 27:819–833. doi:10.3233/JAD-2011-111013.
  37. McDermott S., Wu J., Cai B., et al. Probability of intellectual disability is asso-ciated with soil concentrations of arsenic and lead // Chemosphere. 2011; 84:31–38. doi:10.1016/j.chemos phere.2011.02.088