Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

COMPARATIVE EVALUATION OF PROPERTIES OF XEROGELS AND AEROGELS BASED ON POLYVINYL ALCOHOL AND L-LACTIDE AND Ε-CAPROLACTONE COPOLYMER

DOI: https://doi.org/10.29296/25877313-2018-12-07
Download full text PDF
Issue: 
12
Year: 
2018

O.A. Legonkova Dr.Sc. (Eng.), Head of the Department of Dressing, Suture and Polymer Materials in Surgery, National Medical Research Center of Surgery named after A.V. Vishnevsky (Moscow) E-mail: Legonkova@ixv.ru T.I. Vinokurova Ph.D. (Eng.), Chief Rasearch Scientist, National Medical Research Center of Surgery named after A.V. Vishnevsky (Moscow) L.Yu. Asanova Junior Research Scientist, The National Medical Research Center of Surgery named after A.V. Vishnevsky (Moscow) A.Yu. Nikolaev Ph.D. (Phys.-Math.), Chief Rasearch Scientist, Institute of Organoelement Compounds RAS named after A.N. Nesmeyanov (Moscow)

Phys.-Math.), Chief Rasearch Scientist, Institute of Organoelement Compounds RAS named after A.N. Nesmeyanov (Moscow) The difference between aеrоgels and traditional xerogels is in the method being used in removing liquid. Recently, materials dried with the help of freeze-drying have been called aerogels. Nowadays, the term "aerogels" is used to refer to the materials obtained under supercritical conditions. The dis-tinctive features of aerogels are high porosity and specific surface, low density. These materials are positioned for medical use, for example, in tissue en-gineering and as wound dressings. The properties of aerogels based on various raw materials are described in the literature: polylactides, alginates, pec-tin, starch, cellulose, isocyanates, polymethyl siloxanes and etc. The aim of this work was to compare the physical and mechanical properties of aerogels and xerogelsout of polyvinyl alcohol and L-lactide and ε-caprolactone copolymer as an example. Drying technology in supercritical CO2 leads to increasing the strength of aerogels and xerogels based on PVA and PCL, increasing their rigidity, specific surface area and, consequently, obtaining highly porous materials. It is possible to select further the concentration and molecular mass of polyvinyl alcohol as well as solvents for copolymer of L-lactide and ε-caprolactonebased polymers for the production of porous materials, but it is obvious that the supercritical drying technology leads to an increase of aerogels elasticity while maintaining sufficient strength in a moist medium, that is very important when using medical products in vivo.

Keywords: 
aerogels
xerogels
supercritical drying technology
physical and mechanical characteristics
specific surface area
porosity
scanning electron microscopy

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Pierre A.C., Pajonk G.M. Chemistry of aerogels and their applications // Chem. Rev. 2002. 102. P. 4243–4265.
  2. Reverchon E., Cardea S., Rapuano C. A new supercritical fluid-based process to produce scaffolds for tissue replacement // J. of Supercritical Fluids. 2008. № 45. P. 365–373.
  3. Ahmad F., Ulker Z., Erkey C. A novel composite of alginate aerogel with PET nonwoven with enhanced thermal resistance // Journal of Non-Crystalline Solids. 2018. № 491. P. 7–13.
  4. Horvat G., Xhanari K., Finsgar M., Gradisnik L., Maver U., Knez Z., Novak Z. Novel ethanol-induced pectin–xanthan aerogel coatings for orthopedic applications // Carbohydrate Polymers. 2017. № 166. P. 365–376.
  5. Goimil L., Braga M.E.M., Dias A.M.A., Gómez-Amoz J.L., Concheiro A., Alvarez-Lorenzo C., de Sousa H.C., García-González C.A. Supercritical processing of starch aerogels and aerogel-loaded poly(e-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration // Journal of CO2 Utilization. 2017. 18. P. 237–249.
  6. Lopes J.M., Mustapa A.N., Pantić M., Bermejo M.D., Novak Z., Knez Ž., Cocero M.J. Preparation of cellulose aerogels from ionic liquid solutions for supercritical impregnation of phytol // The Journal of Supercritical Fluids. 2017. № 130. P. 17–22.
  7. Aghabararpour M., Mohsenpour M., Motahari S., Abolghasemi A. Mechanical properties of isocyanate crosslinked resorcinol formaldehyde aerogels // Journal of Non-Crystalline Solids. № 481. 2018. P. 548–555.
  8. Lei C., Lib J., Sun C., Yang H., Xia T., Hu Z., Zhang Y. Transparent, elastic and crack-free polymethylsilsesquioxane aerogels prepared by controllable shrinkage of the hydrogels in the aging process // Microporous and mesoporous materials. 2018. № 267. P. 107–114.
  9. Lozinsky V.I. Cryogelson the basis of natural and synthetic polymers: preparation, properties and application // Russ. Chem. Rev. 2002. V. 71. № 6. P. 489–511.