THE BIOENERGETIC CHARACTERISTICS OF MITOCHONDRIA OF THE RAT LIVER AT LOW BODY TEMPERATURES

DOI: https://doi.org/10.29296/25877313-2019-05-07
Download full text PDF
Issue: 
5
Year: 
2019

R.A. Khalilov Ph.D. (Biol.), Assistant Professor, Department of Biochemistry and Biophysics, Dagestan State University (Makhachkala) S.I. Khizrieva Post-Graduate student, Dagestan State University (Makhachkala) A.M. Dzhafarova Ph.D. (Biol.), Assistant Professor, Department of Biochemistry and Biophysics, Dagestan State University (Makhachkala) E-mail: albina19764@mail.ru V. R. Abdullaev Ph.D. (Biol.), Assistant Professor, Department of Biochemistry and Biophysics, Dagestan State University (Makhachkala)

Many of the pathological effects of hypothermia are directly or indirectly associated with changes in the functioning of mitochondria, the sensitive indicators of which are their bioenergetics characteristics. In this paper, the bioenergetic characteristics of isolated rat liver mitochondria in normal and hypothermia of different depths were investigated. Moderate (30 °C) hypothermia was found to significantly increase the respiratory rate of mitochondria. The deepening of the hypothermic state to 20 °C continues to stimulate respiration, however, increase in its rate becomes less pronounced relatively moderate hypothermia. In both moderate and deep hypothermia, the rate of oxidative phosphorylation is increased, and respiratory controls, P/O, and sensitivity to 2.4 DNP of mitochondrion are reduced. Many of these changes in mitochondrial respiratory parameters are more pronounced with moderate hypothermia. A comparative analysis of the bioenergetic characteristics of mitochondria obtained in the study of glutamate- and succinate-dependent res-piration suggests that the stimulation of mitochondrial respiration during hypothermia occurs mainly due to changes in the functioning of Complex I of the respiratory chain.

Keywords: 
hypothermia
rats
mitochondria
respiration
bioenergetic characteristics

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Grigor'ev Е.V., SHukevich D.L., Plotnikov G.P., Tihonov N.S. Terapevticheskaya gipotermiya: vozmozhnosti i perspektivy // Klinicheskaya medicina. 2014. № 9. S. 916.
  2. Osellame L.D., Blacker T.S., Duchen M.R. Cellular and molecular mechanisms of mitochondrial function // Best Pract. Res. Clin. Endocrinol. Metab. 2012; 26:71123.
  3. Mirskaya R.O. Issledovanie energeticheskih processov v mitohondriyah tkanej krys pri gipotermii: Avtoref. diss. … kand. biol. nauk. Mahachkala: Dagestanskij gosudarstvennyj universitet, 2000. 27 s.
  4. Rybal'chenko V.K., Koganov M.M. Struktura i funkcii membran. Kiev: VSH, 1998. 312 s.
  5. Mayahi M.T.D., Klichkhanov N.K. Vliyanie dalargina na soderzhanie gormonov gipofizarno-nadpochechnikovogo i gipofizarno-tireoidnogo endokrinnogo kompleksov v krovi krys pri gipotermii // Izvestiya Samarskogo nauchnogo centra RAN. 2012. № 4. S. 27377.
  6. Volzhina N.G. Uglevodnyj i energeticheskij obmen golovnogo mozga pri adaptacii k pereohlazhdeniyam: avtoref. dis. ... doktora biol. nauk: 03.00.04 / Rostov-na-Donu, 1992. S. 36.
  7. Сheng S.-Y., Leonard J.L., Davis P.J. Molecular aspects of thyroid hormone actions // Endocr. Rev. 2010; 31(2):139–70.
  8. Maslov L.N., Lishmanov YU.B., Haliulin I.G. I dr. Razobshchayushchie belki i ih rol' v regulyacii ustojchivosti mozga i serdca k dejstviyu ishemii i reperfuzii // Rossijskij fiziologicheskij zhurnal im. Sechenova. 2011; 97 (8): 761–780.
  9. Skulachev V.P., Bogachev A.V., Kasparinskij F.O. Membrannaya bioenergetika. M.: MGU, 2012. S. 368.
  10. Blagojević D. Free radical biology in hypothermia / Systems biology of free radicals and antioxidants / Berlin Heidelberg: Springer-Verla. 2014. P. 376–92.