DETERMINATION OF THE FREE RADICAL REACTIONS IN WHOLE BLOOD OF WISTAR RATS UNDER STRESS-INDUCED PHYSICAL EXERCISE

DOI: https://doi.org/10.29296/25877313-2022-01-08
Issue: 
1
Year: 
2022

O.A. Puzikova Post-graduate Student, Institute of Biology, University of Tyumen (Tyumen, Russia) E-mail: olga.puzikova1997@yandex.ru; ORCID: 0000-0003-4107-990X I.V. Ralchenko Dr.Sc. (Biol.), Professor, Department of Human and Animal Anatomy and Physiology, University of Tyumen; Professor, Department of Biochemistry, Tyumen State Medical University Ministry of Health of Russia (Tyumen, Russia) E-mail: ralchenko-i@mail.ru; ORCID: 0000-0002-4375-078X

Purpose. Determination of the free radical reactions in whole blood of Wistar rats under stress-induced physical exercise. Materials and methods. The object of the research is whole blood of male Wistar rats. Rats in the experimental group were forced to swim in an aquarium (swimming time 40 minutes at the water temperature of 25 C with using of Porsolt test). The swimming time was determined experimen-tally after the stress modeling. The values of maximum luminescence intensity (Imax) and its growth rate (L tg) were determined with spontaneous luminol-dependent chemiluminescence on BCLM 3606M biochemiluminometer. The rate of the free radical reaction was calculated by using the formula described by Yu.A. Vladimirov et al. (2011). Results. During stress-induced physical exercise Imax value significantly increases by 1.09 times (p < 0.05) and L tg value significantly decreases by 4.65 times (p < 0.05). Between the above-noted parameters the linear dependence described with the equation Imax = 128.411L tg where 128.411 is the coefficient characterizing BCLM 3606M analyzer’s sensitivity to radiation of a photomultiplier tube is observed. The rate constants of the studied free radical reactions were established with this equation: the constant of the first reaction k1 = 11010 (mol/dm3)−1s−1 is the constant of peroxynitrite formation rate, the constant of the second reaction k2 = 3.2107 (mol/dm3)−1s−1 is the constant of the rate of reduction of glutathione-thiyl radical to reduced form of glutathione. Conclusions. As a result of our study, it was found that there is the reaction of formation of peroxynitrite from radical of nitrogen monoxide and the reaction of reduction of glutathione-thiyl radical to reduced form of glutathione during stress-induced physical exercise. For the first time free radical re-actions during stress-induced physical exercise were determined with the dependence of luminescence rate on ratio of maximum chemiluminescence intensity to the coefficient characterizing BCLM 3606M analyzer sensitivity to radiation of a photomultiplier tube. For the first time the equation described by Yu.A. Vladimirov et al. (2011) used in study of free radical reactions using BСLM 360* analyzers. In the process of chemiluminescence substances are not destroyed, therefore a reaction path doesn’t change. In addition, chemiluminescence is highly sensitive, which is very important when register-ing highly reactive radicals.

Keywords: 
free radical reactions
stress
physical exercise
chemiluminescence
reaction rate constant
peroxynitrite
nitrogen monoxide
gluta-thione-thiyl radical
glutathione

References: 
  1. Shlapakova T.I., Kostin R.K., Tjagunova E.E. Aktivnye formy kisloroda: uchastie v kletochnyh processah i razvitii patologii. Bioorganicheskaja himija. 2020; 46(5): 466–485.
  2. Sharma P., Jha A.B., Dubey R.S. et al. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany. 2012; Article ID 217037. 26 p.
  3. Grigor'eva N.M. Ispol'zovanie antioksidantov v sportivnoj praktike. Nauchno sportivnyj vestnik Urala i Sibiri. 2020; (1): 23–36.
  4. Vladimirov Ju.A., Proskurnina E.V. Svobodnye radikaly i kletochnaja hemiljuminescencija. Uspehi biologicheskoj himii. 2009; 49: 341–88.
  5. Lytkina E.Ju. Biohemiljuminescentnyj analiz krovi cheloveka. Luchshie vypusknye kvalifikacionnye raboty 2008 goda. Chast' 1: Estestvenno-nauchnoe napravlenie. Tjumen': izd-vo Tjumenskogo gosudarstvennogo universiteta, 2009; 166–75.
  6. Porsolt R.D., le Pichon M., Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977; 266: 730–732.
  7. Savchenko A.A. Grinshtejn Ju.I., Drobysheva A.S. Osobennosti metabolicheskogo obespechenija respiratornogo vzryva nejtrofilov krovi i mokroty u bol'nyh vnebol'nichnoj pnevmoniej. Pul'monologija. 2019; 29(2): 167–74.
  8. Vladimipov Ju.A., Ppockupnina E.V., Izmajlov D.Ju. Kineticheskaja xemiljuminescencija kak metod izuchenija peakcij svobodnyx padikalov. Biofizika. 2011; 56(6): 1081–90.
  9. Nikolaidis M.G., Margaritelis N.V., Matsakas A. Quantitative Redox Biology of Exercise. Int. J. Sports Med. 2020; 41(10): 633–45.
  10. Schöneich C., Asmus K.D. Reaction of thiyl radicals with alcohols, ethers and polyunsaturated fatty acids: A possible role of thiyl free radicals in thiol mutagenesis? Radiat. Environ. Biophys. 1990; 29(4): 263–71.
  11. Kolesov S.A., Rahmanov R.S., Blinova T.V. i dr. Osobennosti funkcionirovanija sistemy glutationa pri fizicheskih nagruzkah i vlijanie na nee alimentarnyh faktorov. Sportivnaja medicina: nauka i praktika. 2017; 7(2): 39–45.
  12. Sergienko V.I., Kantjukov S.A., Ermolaeva E.N. i dr. Hemiljuminescencija trombocitov pri fizicheskih nagruzkah raznoj intensivnosti. Bjulleten' jeksperimental'noj bi-ologii i mediciny. 2019; 167(6): 686–9.
  13. Ralchenko I.V., Zarubina I.A. Izmenenie metabolizma arahidonovoj kisloty v kletkah i ih vlijanie na aktivnost' trombocitov. Uspehi sovremennogo estestvoznanija. 2008; (6): 54.