Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

PROTEOLYTIC AND COLLAGENOLYTIC ACTIVITY OF MYCELIAL FUNGI IN THE PROCESS OF DEEP CULTIVATION STUDY

DOI: https://doi.org/10.29296/25877313-2022-09-08
Download full text PDF
Issue: 
9
Year: 
2022

Z.K. Nikitina
Dr.Sc. (Biol), Professor, All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (Moscow, Russia)
E-mail: nikitinaz@yandex.ru
I.K. Gordonova
Ph.D. (Biol), Leading Research Scientist, All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (Moscow, Russia)
E-mail: gordonova777@yandex.ru
E.M. Nasibov
Post-graduate Student, All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (Moscow, Russia)

Relevance. Enzymes with proteolytic and collagenolytic activity have been considered in recent years as therapeutic agents that can be used in med-icine for the treatment of various pathologies. The use of microorganisms as producers of these biologically active substances has a number of ad-vantages. Despite the existence of numerous studies devoted to the study of the hydrolytic activity of various microorganisms, the search for new producers of proteinases and collagenases remains an urgent biotechnological task. Objective. To study the proteolytic and collagenolytic activity of previously selected mycelial fungi during deep cultivation using a modified Chapek medium. Material and methods. The objects of the study were 5 strains of 4 species of micromycetes from the VILAR microorganisms collection: Aspergillus fumigatus F 22, A. sydowii F 25, Botrytis terrestris F 38, Cladosporium herbarum F 33, 57. Deep cultivation was carried out using a liquid modified medi-um Chapek with partial replacement of sucrose for collagen (0.5% sucrose and 1.5% collagen). The concentration of protein, sucrose, total proteolytic and collagenolytic activity were determined in the filtrates of the culture fluid. Results. The conducted studies have shown that in the process of deep cultivation, the studied micromycetes grew on modified media with partial replacement of sucrose with collagen. It was noted that on 3-4 days there was complete utilization of sucrose from the nutrient fluid and the beginning of active accumulation of extracellular proteins. It was found that the micromycete A. fumigatus F 22 had the highest proteolytic, specific proteolytic activity during cultivation, as well as the maximum collagenolytic activity of secreted enzymes. Conclusions. Based on the results obtained, the culture of A. fumigatus F 22 was selected for further research as a potential collagenase producer.

Keywords: 
Nikitina Z.K.
Gordonova I.K.
Nasibov E.M.

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Tandon S., Sharma A., Singh S., et al. Therapeutic enzymes: Discoveries, production and applications. J. Drug Delivery Science and Technology. 2021; 63: 102455102472.
  2. Alipour H, Raz A., Zakeri S., et al. Therapeutic applications of collagenase (metalloproteases): A review. Asian. Pac. J. Trop. Biomed. 2016; 6(11): 975–981.
  3. Arhincheeva N.C., Bal'haev I.M. Sovremennoe sostojanie i perspektivnye napravlenija razvitija peptidnoj terapii. Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. 2022; 25(2): 36.
  4. Kistenev Ju.V., Vrazhnov D.A., Nikolaev V.V. i dr. Issledovanie prostranstvennoj struktury kollagena s primeneniem metodov mnogofotonnoj mikroskopii i mashinnogo obuchenija. Uspehi biologicheskoj himii. 2019; 59: 219252.
  5. Potehina Ju.P. Struktura i funkcii kollagena. Rossijskij osteopat. zhurnal. 2016; № 1–2 (32–33): 87–99.
  6. Fields G.B. Interstitional collagen catabolism. J. Biol. Chem. 2013; 288 (13): 87858793.
  7. Waycaster C., Carter M.J., Gilligan A.M., et al. Comparative cost and clinical effectiveness of clostridial collagenase oint-ment for chronic dermal ulcers. J. Comp. Eff. Res. 2018; 7(2): 149–165.
  8. Majorova A.V., Sysuev B.B., Ivankova Ju.O., Hanalieva I.A. Kollagenazy v medicinskoj praktike: sovremennye sredstva na osnove kollagenazy i perspektivy ih sovershenstvovanija. Farmacija i farmakologija. 2019; 7(5): 260270.
  9. Zhang D., Zhang Y., Wang Z., Zhang X., et al. Target radiofrequency combined with collagenase chemonucleolysis in the treatment of lumbar intervertebral disc herniation. Int. J. Clin. Exp. Med. 2015; 8(1): 526532.
  10. Salma S.S., Abdel-Halim M., Ali M.E., et al. Collagenase loaded chitosan nanoparticles for digestion of the collagenous scar in liver fibrosis: The effect of chitosan intrinsic collagen binding on the success of targeting. Europ. J. Pharmaceutics Biopharmaceutics. 2020; 148: 5466.
  11. Ziegelmann M.J., Heslop D., Houlihan M., et al. The Influence of Indentation Deformity on Outcomes with Intra-lesional Collagenase Clostridium Histolyticum Monotherapy for Peyronie's Disease. Urology. 2020; 139: 122128.
  12. Corder R.D., Gadi S.V., Vachieri R.B., et al. Using rheology to quantify the effects of localized collagenase treatments on uterine fibroid digestion. Acta Biomater. 2021; 134: 443452.
  13. Loganathan G., Balamurugan A.N., Venugopal S. Human pancreatic tissue dissociation enzymes for islet isolation: Advances and clinical perspectives. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020; 14: 159166.
  14. Wanderley M.C.A., Wanderley J.M., Neto D., et al. Collagenolytic enzymes produced by fungi: a systematic review. Brasilian J. Microbiology. 2017; 48: 1324.
  15. Sharkova T.S., Kurakov A.V., Osmolovskiy A.A., et al. Screening of producers of proteinases with fibrinolytic and collagenolytic activities among micromycetes. Microbiology. 2015; 84(3): 359–64.
  16. Zhang Y.-Z., Ran L.-Y., Li C.-Y., Chen X.-L. Diversity, structures, and collagen-degrading mechanisms of bacterial collagenolytic proteases. Appl. Environ. Microbiol. 2015; 81: 6098–6107.
  17. Pal G.K., Suresh P.V. Microbial collagenases: Challenges and prospect in production and potential applications in food and nutrition. RSC Advances. 2016; 6: 4056.
  18. Daboor S.M., Budge S.M., Ghaly A.E., et al. Extraction and purification of collagenase enzymes: a critical review. Am. J. Biochem. Biotechnol. 2010; 6(4): 239–263.
  19. Konon A.D., Petrovskij S.V., Shamburova M.Ju. i dr. Osobennosti biotehnologij klostridial'nyh kollagenaz – perspektivnyh fermentov medicinskogo naznachenija. Medicina jekstrennyh situacij. 2019; № 2(56): 45–57.
  20. Nikitina Z.K., Gordonova I.K., Nasibov Je.M. Sravnitel'naja harakteristika kollagenoliticheskoj aktivnosti gribov, otnosjashhihsja k razlichnym rodam. Sb. materialov jubilejnoj Mezhdunar. nauchn. konf. «90 let – ot rastenija do lekarstvennogo preparata: dostizhenija i perspektivy». M., 2021; 293300.
  21. Kusakina M.G., Suvorov V.I., Chudinova L.A. Bol'shoj praktikum «Biohimija». Laboratornye raboty: ucheb. posobie. Perm': Perm. gos. nac. issled. un-t, 2012; 148 с.
  22. Lee Y.P., Takahashi T. An improved colorimetric determination of amino acids with the use of ninhydrin. Analytical Biochemistry. 1996; 14: 7177.