DOI: https://doi.org/10.29296/25877313-2019-10-06

E.A. Goncharuk Ph.D. (Biol.), Senior Research Scientist, К.А. Timiryazev Institute of Plant Physiology Russian Academy of Sciences (IPP RAS, Moscow) E-mail: goncharuk.ewgenia@yandex.ru L.V. Nazarenko Ph.D. (Biol.), Associate Professor, Moscow City University, Institute of Natural Sciences and Sports Technologies (MGPU, Moscow) E-mail: nlv.mgpu@mail.ru N.V. Zagoskina Dr.Sc. (Biol.), Professor, К.А. Timiryazev Institute of Plant Physiology Russian Academy of Sciences (IPP RAS, Moscow) E-mail: biophenol@gmail.com

The flax possesses the ability to biosynthesis of secondary metabolites, including phenolic compounds, which have high biological activity. Methods of biotechnology allow us to research the influence of various stressors on plants. The aim of the work was to study the effect of UV-B rays on the morphophysiological characteristics of the contrast resistance to stress strains of callus cultures of flax (Linum usitatissimum L.) and the accu-mulation of phenolic compounds in them. A feature of callus was evaluated by morphological characteristics and water content. Phenolic compounds were extracted with 96% ethanol and their total content was determined spectrophotometrically. It was found that in response to the action of UV-B radiation in flax callus cultures oc-curs activation of adaptation processes. The studied parameters change to a greater measure in flax culture with reduced stress resistance. Thus, the influence of UV-B rays on plant cell cultures leads to an increase in the accumulation of phenolic compounds in them.

Linum usitatissimum L.
callus culture
UV-B rays
phenolic compounds

  1. Dotto M., Casati P. Developmental reprogramming by UV-B radiation in plants // Plant Science. 2017. V. 264. P. 96–101.
  2. Zaprometov M.N. Fenol'nye soedinenija: rasprostranenie, metabolizm i funkcii v rastenijah. M.: Nauka. 1993. 272 s.
  3. Bidel L.P., Coumans M., Baissac Y., Doumas P., Jay-Allemand C. Biological activity of phenolics in plant cells // Recent advances in polyphenol research. United Kingdom: Blackwell Publising Ltd. 2010. V. 2. P. 163–205.
  4. Santin M., Lucini L., Castagna A., Rocchetti G., Hauser M.T., Ranieri A. Comparative “phenol-omics” and gene expression analyses in peach (Prunus persica) skin in response to different postharvest UV-B treatments // Plant physiology and biochemistry. 2019. V. 135. P. 511–519.
  5. Butenko R.G. Biologija kletok vysshih rastenij in vitro i biotehnologii na ih osnove. M.: FBk-Press.1999. 160 s.
  6. Nosov A.M. Application of cell technologies for production of plant-derived bioactive substances of plant origin // Applied biochemistry and microbiology. 2012. V. 48. P. 609–624.
  7. Tolkachev O.N., Zhuchenko A.A. ml. Biologicheski aktivnye veshhestva l'na: ispol'zovanie v medicine i pitanii // Himiko-farmacevticheskij zhurnal. 2000. № 7. S. 23–28.
  8. Titok V.V., Lemesh V.A., Hotyleva L.V. Len kul'turnyj. Klassifikacija, botanicheskaja i hozjajstvennaja harakteristika, genetika, fiziologija, biohimija i biotehnologija. Saarbrücken: LAP LAMBERT Academic Publishing. 2012. 268 s.
  9. Gosudarstvennyj reestr selekcionnyh dostizhenij, dopushhennyh k ispol'zovaniju. T. 1. Sorta rastenij https://reestr.gossort.com/reestr.
  10. Zagoskina N.V., Goncharuk E.A., Alyavina A.K. Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant // Russian Journal of Plant Physiology. 2007. V. 54. P. 237–243.
  11. Mierziak J., Kostyn K., Kulma A. Flavonoids as important molecules of plant interactions with the environment // Molecules. 2014. V. 19.
  12. P. 1624016265.
  13. Ahmad W., Zahir A., Nadeem M., Garros L., Drouet S., Renouard S., Abbasi B.H. Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures // Process biochemistry. 2019. V. 79. P. 155–165.