Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

BIOCATALYSIS AS A TOOL FOR OPTIMIZING PHARMACEUTICAL SYNTHESIS OF DRUGS (REVIEW)

DOI: https://doi.org/10.29296/25877313-2022-08-02
Download full text PDF
Issue: 
8
Year: 
2022

S.V. Pechinskii
Ph.D. (Pharm.), Associate Professor,
Pyatigorsk Medical Pharmaceutical Institute — Branch of Volgograd State Medical University
E-mail: hplc@yandex.ru
SPIN 9798-4663; Researcher ID AAN-3254-2020; ORCID ID 0000-0002-9505-9990; Scopus AuthorID 55993869200

Relevance. Competitiveness and recognition of Russian drugs in the pharmaceutical market is possible only if the domestic product and its technolo-gy are inscribed in the paradigm of the development of advanced global pharmaceutical production, the priority drivers of which are environmental friendliness and economic efficiency. The introduction of "green technologies", and in particular the principles of "green chemistry", is a clear manifes-tation of the current trend and demand for the future in the development and production of medicines. The most interesting from a theoretical point of view and promising in practical terms is the optimization of the processes of synthesis of pharmaceutical substances through the introduction of en-zyme synthesis. The goal is to show the prospects for the use of biocatalysis in the synthesis of drugs. Material and methods. The materials were scientific publications and patents devoted to modern problems and ways to solve them in the field of "green chemistry", "biocatalysis" and "synthesis of pharmaceutical substances". When writing the review, the following methods were used: system-atization, comparison, analysis and generalization. Results. The review gives a brief historical description of the "waves of biocatalysis", considers the most striking examples of the modern application of enzyme catalysis in the world practice of pharmaceutical synthesis, generalizes the general prospects for the use of biocatalysis in the synthesis of drugs. The article shows that chemoenzymatic synthesis is economical, increases the purity of the target product, especially its "stereopurity", allows the synthesis of new drugs, which were previously difficult or even impossible to obtain according to classical schemes. It is concluded that, despite sufficient experimental material in related scientific fields, in our country there is practically no development of the direction on the use of enzyme syn-thesis in the development and production of medicines.

Keywords: 
enzyme synthesis
biocatalysis
biocatalysts
pharmaceutical substance
drug
pharmaceutical synthesis

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Anastas P.T., Warner J.C. Green chemistry: theory and practice. New York: Oxford University Press, 1998.
  2. Truppo M.D. Biocatalysis in the pharmaceutical industry: the need for speed. ACS Medicinal Chemistry Letters. 2017; 8(5): 476–480. doi: 10.1021/acsmedchemlett.7b00114.
  3. База данных медицинских и биологических публикаций Национального центра биотехнологической информации (NCBI) США. https://pubmed.ncbi.nlm.nih.gov.
  4. Federsel H.J., Moody T.S., Taylor S.J.C. Recent trends in enzyme immobilization-concepts for expanding the biocatalysis toolbox. Molecules. 2021; 26(9): 2822. doi: 10.3390/molecules26092822.
  5. Gkantzou E., Chatzikonstantinou A.V., Fotiadou R., Giannakopou-lou A., Patila M., Stamatis H. Trends in the development of innova-tive nanobiocatalysts and their application in biocatalytic transfor-mations. Biotechnol. Adv. 2021; 51: 107738. doi: 10.1016/j.biotechadv.2021.107738.
  6. Buchholz K., Poulson P.B. Overview of history of applied biocatal-ysis, in: Applied biocatalysis edited by Straathof A.J.J., Adlercreutz P. Amsterdam: CRC Press, 2000.
  7. Stein R.L. A Process Theory of enzyme catalytic power – the inter-play of science and metaphysics. Found Chem. 2006; 8: 3–29. doi.org/10.1007/s10698-005-7907-8.
  8. Rastall R.A., Bucke Ch. Enzymatic synthesis of oligosaccharides. Biotechnology and genetic engineering reviews. 1992; 10(1): 253–282. doi: 10.1080/02648725.1992.10647890 re-port2020.novozymes.com.
  9. Biotech powerhouse «Novozymes»: https://www.novozy-mes.com/en.
  10. Bornscheuer U.T., Huisman G.W., Kazlauskas R.J., Lutz S., Moore J.C., Robins K. Engineering the third wave of biocatalysis. Nature. 2012; 485: 185–194. doi.org/10.1038/na-ture11117.
  11. Tischer W. Umweltschutz durch technische Biokatalysatoren, in Symposium Umweltschutz durch Biotechnik. Boehringer Mann-heim GmbH, 1990.
  12. Currin A., Swainston N., Day P.J., Kell D.B. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 2015; 44: 1172–1236. doi.org/10.1039/C4CS00351A.
  13. Davis A., Plowright A., Valeur E. Directing evolution: the next rev-olution in drug discovery? Nat Rev Drug Discov. 2017; 16: 681–698. doi.org/10.1038/nrd.2017.146.
  14. Bornscheuer U.T., Hauer B., Jaeger K.E., Schwaneberg U. Di-rected evolution empowered redesign of natural proteins for the sustainable production of chemicals and pharmaceuticals. An-gewandte Chemie. 2019; 58: 36–40. doi.org/10.1002/anie.201812717.
  15. Illane A. Dr. Frances Arnold is awarded with the Nobel Prize in Chemistry 2018: Good news for biocatalysis. Electronic Journal of Biotechnology. 2018; 36: A1. doi.org/10.1016/j.ejbt.2018.10.001.
  16. Jones C.W. Another nobel prize for catalysis: Frances Arnold in 2018. ACS Catal. 2018; 8: 10913−10913. doi.org/10.1021/ac-scatal.8b04266.
  17. Sheldon R.A., Brady D. The limits to biocatalysis: pushing
  18. the envelope. Chem. Commun. 2018; 54: 60886104. doi.org/10.1039/C8CC02463D.
  19. Woodley J.M. Accelerating the implementation of biocatalysis in in-dustry. Appl Microbiol Biotechnol. 2019; 103: 4733–4739. doi.org/10.1007/s00253-019-09796-x.
  20. Poppe L., Vertessy B.G. The Fourth Wave of Biocatalysis Emerges  The 13th International Symposium on Biocatalysis and Biotrans-formations. ChemBioChem. 2018; 19(4): 284–287. doi.org/10.1002/cbic.201700687.
  21. Bornscheuer Uwe T. The fourth wave of biocatalysis is approach-ing. Phil. Trans. R. Soc. A. 2018; 376(2110): 1–7. doi.org/10.1098/rsta.2017.0063.
  22. Paul T. Anastas, Tracy C. Williamson Green chemistry. ACS Symposium Series. 1996; 626: 1–17. doi: 10.1021/bk-1996-0626.ch001.
  23. Achille Antenucci, Stefano Dughera, Polyssena Renzi Green chem-istry meets asymmetric organocatalysis: a critical overview on cata-lysts synthesis. ChemSusChem. 2021; 14(14): 2785–2853. doi: 10.1002/cssc.202100573.
  24. Marian C. Bryan, Peter J. Dunn, David Entwistle, Fabrice Gallou, Stefan G. Koenig, et al. Green chemistry meets asymmetric organo-catalysis: a critical overview on catalysts synthesis. Green Chem. 2018; 20: 5082–5103. doi: 10.1039/C8GC01276H.
  25. Organization for Economic Co-operation and Development (OECD). The Application of biotechnology to industrial sustaina-bility. Paris: OECD Publishing, 2001. doi.org/10.1787/9789264195639-en.
  26. Faber K., Fessner W.-D., Turnerhttps N.J. Biocatalysis: Ready to master increasing complexity. Adv. Synth. Catal. 2019; 361: 2373–2376. doi.org/10.1002/adsc.201900610.
  27. Roschangar F., Colberg J., Dunn P.J., Gallou F., Hayler J. D., et al. A deeper shade of green: inspiring sustainable drug manufactur-ing. Green Chem. 2017; 19: 281285. https://doi.org/10.1039/C6GC02901A.
  28. McElroy C. Robert, Constantinou Andri, Jones Leonie C., Sum-mertona Louise, Clarkhttps James H. Towards a holistic approach to metrics for the 21st century pharmaceutical industry. Green Chem. 2015; 17: 3111–3121. doi.org/10.1039/C5GC00340G.
  29. Uwe T. Bornscheuer (Chemo-) enzymatic cascade reactions. Zeitschrift für Naturforschung. 2019; 74(3–4): 61–62. doi.org/10.1515/znc-2019-0016.
  30. Rudroff F. Whole-cell based synthetic enzyme cascades  light and shadow of a promising technology. Current Opinion in Chemical Biology. 2019; 49: 84–90. doi.org/10.1016/j.cbpa.2018.10.016.
  31. Ramesh Hemalata, Nordblad Mathias, Whittall John, Woodley John M. Considerations for the application of process technologies in laboratory- and pilot-scale biocatalysis for chemical synthesis. Practical methods for biocatalysis and biotransformations 3. John Wiley & Sons, Ltd Print, 2016. doi.org/10.1002/9781118697856.ch01.
  32. Luke Rogers, Klavs F. Jensenhttps Continuous manufacturing – the Green Chemistry promise? Green Chem., 2019; 21: 3481–3498.doi.org/10.1039/C9GC00773C.
  33. Britton J., Majumdar S., Weiss G.A. Continuous flow biocatalysis. Chem. Soc. Rev. 2018; 47: 5891–5918. doi.org/10.1039/C7CS00906B.
  34. Lorenz P., Eck J. Screening for Novel Industrial Biocatalysts. Eng. Life Sci. 2004; 4(6): 501–504. doi.org/10.1002/elsc.200402159.
  35. Robertson D.E., Steer B.A. Recent progress in biocatalyst discovery and optimization. Curr Opin Chem Biol. 2004; 8(2): 141–149. doi: 10.1016/j.cbpa.2004.02.010.
  36. Robinson P. K. Enzymes: principles and biotechnological applica-tions. Essays Biochem. 2015; 59(15): 141. doi: 10.1042/bse0590001.
  37. Noeya E. L., Tibrewalb N., Jiménez-Osésa G., Osunaa S., Parka J., et al. Origins of stereoselectivity in evolved ketoreductases. PNAS. 2015; 112(51): E7065–E7072. doi.org/10.1073/pnas.1507910112
  38. de María P.D., de Gonzalo G., Alcántara A.R. Biocatalysis as Use-ful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014–2019). Catalysts. 2019; 9 (802): 2–42. https://doi.org/10.3390/catal9100802.
  39. ZHEJIANG CHANGMING PHARMACEUTICAL CO Ltd. Pa-tent CN105063120B. Publ. Date 07.08.2018.
  40. Zheng G., Chen Q. Patent CN104164469B. Publ. Date 26.11.2014.
  41. Mauro Gaboardi, Giuseppe Pallanza, Marco Baratella, Graziano Castaldi, Marta Castaldi. Patent WO2017144423A1. Publ. Date 31.08.2017.
  42. Kossaify A. Vernakalant in Atrial Fibrillation: A relatively new weapon in the armamentarium against an old enemy. Drug Target Insights. 2019; 13(1): 1–7. doi: 10.1177/1177392819861114.
  43. Limanto J., Ashley E.R., Yin J., Beutner G.L., Grau B.T., et al. A highly efficient asymmetric synthesis of vernakalant. Org. Lett. 2014; 16(10): 2716–2719. doi.org/10.1021/ol501002a.
  44. Debarge S., Erdman D.T., O'neill P.M., Kumar R., Karmilowicz M.J. Patent WO2014155291A1. Publ. Date 02.10.2014.
  45. Rother D., Poh M., Sehl T., Baraibar Á.G. Patent WO2014198247A1. Publ. Date 18.12.2014.
  46. Bauer D.W., Hu S., O'neil P.M., Watson T. Patent WO2009019561A2 Publ. Date 14.05.2009.
  47. Wang W., Taber D.F., Renata H. Practical enzymatic production of carbocycles. Chemistry. 2021; 27(46): 11773–11794. doi: 10.1002/chem.202101232.
  48. Federsel H.J., Moody T.S., Taylor S.J.C. Recent trends in enzyme immobilization-concepts for expanding the biocatalysis toolbox. Molecules. 2021; 26(9): 2822. doi: 10.3390/mo-lecules26092822.
  49. Ayala M., Segovia L., Torres E. Halogenases: a biotechnological al-ternative for the synthesis of halogenated pharmaceuticals. Mini Rev Med Chem. 2016; 16(14): 1100–1111. doi: 10.2174/1389557516666160623100619.
  50. Li G., Wang J.B., Reetz M.T. Biocatalysts for the pharmaceutical industry created by structure-guided directed evolution of stereose-lective enzymes. Bioorg Med Chem. 2018; 26(7): 1241–1251. doi: 10.1016/j.bmc.2017.05.021.
  51. Jiang W., Fang B. Synthesizing chiral drug intermediates by bio-catalysis. Appl Biochem Biotechnol. 2020; 192(1): 146–179. doi: 10.1007/s12010-020-03272-3.
  52. Tian C., Xiu P., Meng Y., Zhao W., Wang Z., Zhou R. Enantiomeri-zation Mechanism of Thalidomide and the Role of Water and Hy-droxide Ions. Chemistry А European Journal. 2012; 18(5): 14305–14313. doi.org/10.1002/chem.201202651.
  53. Bezborodov A.M., Zagustina N.A. Enzymatic biocatalysis in chemi-cal synthesis of pharmaceuticals (Review). Appl Biochem Microbi-ol. 2016; 52: 237–249. doi.org/10.1134/S0-003683816030030.
  54. Hoyos P., Pace V., Hernaiz M.J., Alcantara A.R. Biocatalysis in the pharmaceutical industry. A greener future. Current Green Chemis-try. 2014; 1(2): 115–181 doi:10.2174/2213346-101666131113201722.
  55. Huffman M.A., Fryszkowska A., Alvizo O., Borra-Garske M., Campos K.R., et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science. 2019; 366(6470): 1255–1259. doi: 10.1126/science.aay8484.
  56. Del Arco J., Acosta J., Fernández-Lucas J. New trends in the bio-catalytic production of nucleosidic active pharmaceutical ingredients using 2'-deoxyribosyltransferases. Biotechnol Adv. 2021; 51: 107701. doi: 10.1016/j.biotec-hadv.2021.107701.
  57. InterPro. Classification of protein families: https://www.ebi. ac.uk/interpro.
  58. PfamScan. PfamScan is used to search a FASTA sequence against a library of Pfam HMM: https://www.ebi.ac.uk /Tools/pfa/pfamscan.
  59. Selenzyme: Enzyme Selection Tool: http://selenzyme.syn-biochem.co.uk.
  60. Carbonell P., Wong J., Swainston N., Takano E., Turner N.J., et al. Selenzyme: enzyme selection tool for pathway design. Bioinformat-ics. 2018; 34(12): 2153–2154. doi.org/10.1093 /bioinformatics/bty065.
  61. Rahman S., Cuesta S, Furnham N, Holliday G.L., Thornton J.M. EC-BLAST: a tool to automatically search and compare enzyme re-actions. Nature Methods. 2014; 11: 171–174. doi.org/10.1038/nmeth.2803