Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

NEUROPROTECTIVE EFFECTS OF HYPEROSIDE, UNDER CONDITIONS OF MITOCHONDRIAL COMPLEX IV ACTIVITY DEFICIENCY

DOI: https://doi.org/10.29296/25877313-2022-08-06
Download full text PDF
Issue: 
8
Year: 
2022

D.I. Pozdnyakov
Ph.D. (Pharm.), Head of the Laboratory of Living Systems,
Associate Professor of the Department of Pharmacology with a Course of Clinical Pharmacology,
Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University (Pyatigorsk, Russia)
E-mail: pozdniackow.dmitry@yandex.ru

Relevance. Neuroprotection is one of the significant components of the therapy of the central nervous system diseases which are associated with a violation of energy metabolism. The immediate cause of the deficiency of the intracellular pool of macroergic compounds may be the dysfunction of the mitochondrial complex IV. Hyperoside is a flavonoid with an extensive spectrum of pharmacological activity, including potentially high neuroprotective properties. Material and methods. Mitochondrial complex IV activity deficiency was modeled in Wistar rats by intracerebral injection of 3M sodium azide solution, an inhibitor of mitochondrial complex IV. Hyperoside and the reference drug ethylmethylhydroxypyridine succinate were administered orally at a dose of 100 mg / kg, for 30 days from the moment of injection of sodium azide. After that, the intensity of pyruvate-dependent cellular respiration and changes in the concentration of mitochondrial hydrogen peroxide in the brain tissue of animals were evaluated. Results. In the course of the work, it was found that the course administration of hyperoside and a reference drug contributed to an increase in the intensity of cellular respiration, which was expressed in an increase in ATP-generating activity, the maximum level of respiration and respirometric capacity in relation to untreated animals. Also, the use of the referent and hyperoside contributed to a statistically significant decrease in the content of mitochondrial hydrogen peroxide, while more pronounced changes were obtained when hyperoside was administered to animals. Conclusion. The obtained results indicate that the course administration of hyperoside in conditions of energy deficiency caused by mitochondrial complex IV deficiency increases the intensity of cellular respiration processes and prevents the generation of reactive oxygen species, which in turn may be evidence of the presence of neuroprotective action.

Keywords: 
neurotective effect
flavonoids
hyperoside
mitochondrial complex IV

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Zhou J., Zhang S., Sun X., Lou Y., Yu J. Hyperoside Protects HK-2 Cells Against High Glucose-Induced Apoptosis and Inflammation via the miR-499a-5p/NRIP1 Pathway. Pathol Oncol Res. 2021; 27: 629829.
  2. Fan H., Li Y., Sun M., Xiao W., Song L., Wang Q., Zhang B., Yu J., Jin X., Ma. C, Chai. Z. Hyperoside Reduces Rotenone-induced Neuronal Injury by Suppressing Autophagy. Neurochem Res. 2021; 46(12): 3149–3158.
  3. Воронков А.В., Нигарян С.А., Поздняков Д.И. Церебропротек-торная активность мальвидина, гиперозида и глицитеина в условиях фокальной ишемии головного мозга. Эксперимен-тальная и клиническая фармакология. 2020; 83(7): 3–6. (Voronkov A.V., Nigaryan S.A., Pozdnyakov D.I. Cerebroprotektornaya aktivnost' mal'vidina, giperozida i gliciteina v usloviyah fokal'noj ishemii golovnogo mozga. Eksperimental'naya i klinicheskaya farmakologiya. 2020; 83(7): 3–6.)
  4. Gil A., Martín-Montañez E., Valverde N., Lara E., Boraldi F., Claros S., Romero-Zerbo S.Y., Fernández O., Pavia J., Garcia-Fernandez M. Neuronal Metabolism and Neuroprotection: Neuroprotective Effect of Fingolimod on Menadione-Induced Mitochondrial Damage. Cells. 2020; 10(1): 34.
  5. Greco P., Nencini G., Piva I., Scioscia M., Volta C.A., Spadaro S., Neri M., Bonaccorsi G., Greco F., Cocco I., Sorrentino F., D'Antonio F., Nappi L. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future. Acta Neurol Belg. 2020; 120(2): 277–288.
  6. Zuo Y., Hu J., Xu X., Gao X., Wang Y., Zhu S. Sodium azide induces mitochondria mediated apoptosis in PC12 cells through Pgc 1α associated signaling pathway. Mol Med Rep. 2019; 19(3): 2211–2219.
  7. Voronkov A.V., Pozdnyakov D.I., Adzhiakhmetova S.L., Chervonnaya N.M., Miroshnichenko K.A., Sosnovskaya A.V., Chereshkova E.I. Effect of pumpkin (Cucurbita pepo L.) and marigold (Tagetes Patula L.) Extracts on hippocampal mitochondria functional activity within conditions of experimental acute brain hypometabolism. Pharmacy & Pharmacology. 2019; 7(4): 198–207.
  8. Sia P.I, Wood J.P.M., Chidlow G., Casson R. Creatine is neuroprotective to retinal neurons in vitro but not in vivo. Invest Ophthalmol Vis Sci. 2019 Oct 1; 60(13): 4360–4377.
  9. Pozdnyakov D.I., Zolotych D.S., Larsky M.V. Correction of mitochondrial dysfunction by succinic acid derivatives under experimental cerebral ischemia conditions. Current Issues in Pharmacy and Medical Sciences. 2021; 34(1): 42–48.
  10. Olajide O.J., Enaibe B.U., Bankole O.O., Akinola O.B., Laoye B.J., Ogundele O.M. Kolaviron was protective against sodium azide (NaN3) induced oxidative stress in the prefrontal cortex. Metab Brain Dis. 2016; 31(1): 25–35.
  11. Connolly N.M.C, Theurey P., Adam-Vizi V. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ. 2018; 25(3): 542–572.
  12. Kaushik P., Ali M., Salman M., Tabassum H., Parvez S. Harnessing the mitochondrial integrity for neuroprotection: Therapeutic role of piperine against experimental ischemic stroke. Neurochem Int. 2021; 149: 105138.
  13. Abyadeh M., Gupta V., Chitranshi N., Gupta V., Wu Y., Saks D., Wander Wall R., Fitzhenry M.J., Basavarajappa D., You Y., Salekdeh G.H., Haynes P.A., Graham S.L., Mirzaei M. Mito-chondrial dysfunction in Alzheimer's disease − a proteomics perspective. Expert Rev Proteomics. 2021; 18(4): 295–304.