Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

HUMAN ANTIMICROBIAL PEPTIDES (REVIEW)

DOI: https://doi.org/10.29296/25877313-2023-09-02
Issue: 
9
Year: 
2023

A.G. Volkov
Ph.D. (Medical), Senior Lecturer of Pharmacology Department,
Perm State Medical University named after Academician E. A. Wagner;
Associate Professor of Environmental Protection Department,
Perm National Research Polytechnic University (Perm, Russia)
E-mail: 89991266866@mail.ru

Relevance. The relevance of the antimicrobial peptides study is justified by the serious problem of antibiotic resistance, which presents a worrisome prospect of a significant number of deaths and economic losses in the future. In recent years, scientists have increasingly focused on natural substances, such as antimicrobial peptides, which do not induce bacterial resistance and may be safer for the human body compared to antibiotics. Aim of the research. This review article aims to structure the scientific literature on exploring the potential applications and generation of peptide complexes from the human body. Material and methods. The following databases were used for information retrieval: PubMed, American Society for Microbiology, ResearchGate, Frontiers Research Foundation, Public Library of Science, BioRxiv, Nature Communications, European Commission. Results. The paper provides a description, structure, history of discovery, and research on antimicrobial peptides derived from the human body. The biological properties of these peptides are outlined. The prospects for further studying their properties and developing new-generation antibacterial drugs from them are presented. Conclusions. The investigation of human antimicrobial peptides and the development of innovative drugs based on them represent a promising direction in modern biotechnology. The systematic analysis of scientific data regarding the possibility of obtaining and utilizing peptide complexes from the human body signifies a significant step in the development of novel and effective antimicrobial drugs capable of overcoming the growing threat of antibiotic resistance and aiding in the fight against infectious diseases.

Keywords: 
antimicrobial peptides
antibiotic resistance
antibacterial properties
human blood drugs.

References: 
  1. Zaharova O.I., Liskova E.A., Mihaleva T.V., Blohin A.A. Antibiotikorezistentnost': jevoljucionnye predposylki, mehanizmy, posledstvija. Agrarnaja nauka Evro-Severo-Vostoka. 2018; 64(3): 13–21.
  2. King D.T., Sobhanifar S., Strynadka N.C.J. One ring to rule them all: Current trends in combating bacterial resistance to the beta-lactams. Protein Science. 2016; 25(4): 787–803.
  3. Andrjukova B.G., Zaporozhec T.S., Besednova N.N. Perspektivnye strategii poiska novyh sredstv bor'by s infekcionnymi zabolevanijami. Antibiotiki i himioterapija. 2018; 63(1-2): 44–45.
  4. Mills S., Ross R.P., Hill C. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiology Reviews. 2017; 41: 129–153.
  5. Кисель О.В., Габриелян Н.И., Малеев В.В. Устойчивость к антибиотикам – что можно сделать? Терапевтический архив. 2023; 95(1): 90–93.
  6. Viryasova G.V., Golenkina E.F., Hianik N., et al. Magic Peptide: Unigue Properties of the LRR11 Peptide in the Activation of Leukotriene Synthesis in Human Neutro-phils. Inter-national Journal of Molecular Sciences. 2021; 22(5): 2671.
  7. Niyonsaba F., Nagaoka I., Ogawa H., Okumura K. Multifunctional antimicrobial proteins and peptides: natural acti-vators of immune systems. Current Pharmaceutical Design. 2009; 15(21): 2393–2413.
  8. Steinstraesser L., Kraneburg U., Jacobsen F., Al-Benna S. Host defense peptides and their antimicrobialimmunomo-dulatory duality. Immunobiology. 2011; 216 (3): 322–323.
  9. Ivanov O. Antibakterial'nye peptidy kak al'ternativnoe budushhee terapii bakterial'nyh infekcij. Nauka i innovacii. 2018; 7: 73–78.
  10. Abaturov A.E. Kationnye antimikrobnye peptidy sistemy nespecificheskoj zashhity respiratornogo trakta: defenziny i katelicidiny. Defenziny – molekuly, perezhivajushhie renessans (chast' 2). Zdorov'e rebenka. 2011; 7: 34.
  11. Perron G.G., Zasloff M., Bell G. Experimental evolution of resistanceto an antimicrobial peptide. Proceedings: Biological Sciences. 2006; 273(1583): 251–256.
  12. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002; 415(6870): 389–395.
  13. Lehrer R.I. Primate defensins. Nat.Rev.Microbiol. 2004; 2(9): 727–738.
  14. Bensch K., et al. hBD-1: a novel β-defensin from human plasma. FEBS Letters. 1995; 368: 331–335.
  15. Azimova V.T., Potaturkina-Nesterova N.I., Nesterov A.S. Jendogennye antimikrobnye peptidy cheloveka. Sovremennye problemy nauki i obrazovanija. 2015; 1: 1337.
  16. Oudhoff M.J., Bolscher J.G., Nazmi K., et al. Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. FASEB Journal. 2008; 22(11): 3805–12.
  17. Kokrjakov V.N. Biologija antibiotikov zhivotnogo proishozhdenija. SPb: Nauka, 1999; 162.
  18. Ong P.Y., Ohtake T., Brandt C., et al. Endogenous anti-microbial peptides and skin infections in atopic dermatitis. The New England Journal of Medicine. 2002; 347: 1151–60.
  19. Ovchinnikova T.V. i dr. Molekuljarnoe ponimanie mehanizma antimikrobnogo dejstvija beta-shpil'pinovogo peptida arenicina: specificheskaja oligomerizacija v mi-cellah mojushhego sredstva. Biopolimery. 2008; 89(5): 455–464.
  20. Nijnik A., Hancock R. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerging Health Threats Journal. 2009; 2: 7.
  21. Sergeev A.Ju., Sergeev Ju.V. Faktory rezistentnosti i immunitet pri gribkovyh infekcijah kozhi i slizistyh obolochek. Immunopatologija, allergologija, infektologija. 2004; 1: 6–14.
  22. Vavilova T.P., Dergacheva N.I., Ostrovskaja I.G. Antimikrobnye peptidy – mnogofunkcional'naja zashhita tkanej polosti rta. Rossijskaja stomatologija. 2015; 8(3): 3–12.
  23. Rabinovich O.F., Rabinovich I.M., Abramova E.S. Izmenenie mikrobnoj flory pri patologii slizistoj obolochki rta. Stomatologija (Moskva). 2011; 6: 71.
  24. Olejnik E.A., Petrova N.P., Popov B.A. Perspektivy ispol'zovanija antimikrobnyh peptidov sljuny. Smolenskij medicinskij al'manah. 2020; 3: 130–140.
  25. Zharkova M.S. i dr. Antimikrobnye peptidy mlekopitajushhih: klassifikacija, biologicheskaja rol', perspektivy prakticheskogo primenenija (obzornaja stat'ja). Vestnik SPbGU. 2014; 3(1): 98–114.
  26. Iksanova A.M. i dr. Antimikrobnye pepetidy i belki v biozhidkostjah cheloveka. Microbiology Independent Re-search Journal. 2022; 9(1): 37–55.
  27. Hancock R.E., Sahl H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology. 2006; 24(12): 1551–1557.
  28. Otvos L. (Jr.). Immunomodulatory effects of anti-microbial peptides. Acta Microbiologica et Immunologica Hungarica. 2016; 19: 1–21.
  29. Van Wetering S., Tjabringa S., Hiemstra P.S. Interaction bet-ween neurtophil-delided antimicrobial peptides and airway epi-thelial cells. Journal of Leukocyte Biology. 2005; 77: 444–450.
  30. Tihomirova E.A., Slazhneva E.S., Atrushkevich V.G. β-defenziny i vospalitel'nye zabolevanija parodonta: sistematicheskij obzor. Parodontologija. 2020; 25(4): 276–86.
  31. Kucukkolbashi H., Kucukkolbashi S., Dursun R., Ayyıldız F., Kara H. Determination of defensing HNP-1 in human saliva of patients with oral mucosal diseases. Journal of Immunoas-say and Immunochemistry. 2011; 32(4): 284–95.
  32. Davidopoulou S., Theodoridis H., Nazer K., Kessopoulou E., Menexes G., Kalfas S. Salivary concentration of the anti-microbial peptide LL-37 in patients with oral lichen planus. Journal of Oral Microbiology. 2014; 6: 1.
  33. Frew L., Makieva S., McKinlay A.T., McHugh B.J., Doust A., Norman J.E., et al. Human cathelicidin production by the cervix. PLoS One. 2014; 9(8).
  34. Lande R., Botti E., Jandus C., Dojcinovic D., Fanelli G., Conrad C., et al. The antimicrobial peptide LL37 is a T-cell auto-antigen in psoriasis. Nature Communications. 2014; 5: 5621.
  35. Pinegin B.V., Karsonova M.I. Rol' antimikrobnogo peptida LL-37 v razvitii autoimmunnogo processa. Immunologija. 2012; 5: 276–280.
  36. Shamova O.V., Zharkova M.S., Chernov A.N. i dr. Antimikrobnye pepetidy vrozhdennogo immuniteta kak prototipy novyh sredstv bor'by s antibiotikorezistentnymi bakterijami. Rossijskij zhurnal personalizirovannoj mediciny. 2021; 1(1): 146-1–72.
  37. Musin H.G. Antimikrobnye peptidy – potencial'naja zamena tradicionnym antibiotikam. Infekcija i immunitet. 2018; 8(3): 295–308.
  38. Volkova L.V., Grishina T.A., Volkov A.G. Nizkomolekuljarnye kationnye peptidy lejkocitov, inducirovannye razlichnymi antigenami. Vestnik PNIPU. Himicheskaja tehnologija i biotehnologija. 2015; 4: 35–48.
  39. De Andrea M., Ravera R., Gioia D., Gariglio M., Landolfo S. The interferon system: an overview. European journal of paediatric neurology. 2002; 6: 41‒58.
  40. Negishi H., Taniguchi T., Yanai H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harbor perspec-tives in biology. 2018; 10(11).
  41. Pestka S., Krause C.D., Walter M.R. Interferons, interferon-like cytokines, and their receptors. Immunological Reviews. 2004; 202: 8‒32.
  42. Edge M.D., Camble R. Interferon synthesis by micro-organisms. Biotechnology & Genetic Engineering Reviews. 1984; 2: 215‒252.
  43. Otto B. Recombinant human interferons. Arzneimittel-forschung. 1985; 35(11): 1750‒1752.
  44. Moulton R.G., Gerner G.D. Antibacterial activity of BCG-in-duced, interferon-containing sera. Canadian Journal of Microbiology. 1986; 32(5): 442‒445.
  45. Kirchner H., Digel W., Storch E. Interferons and bacterial infections. Wiener klinische Wochenschrift. 1982; 60(14): 740‒742.
  46. Pecherkina S.A, Maleeva L.I. Antibakterial'noe dejstvie preparata interferona, spektr dejstvija. Zhurnal mikrobiologii, jepidemiologii i immunobiologii. 1982; 10: 77‒79.
  47. Volkova L.V. Prirodnye α-interferon i antibakterial'nyj peptidnyj kompleks: tehnologija poluchenija, novye lekarstvennye formy, ocenka jeffektivnosti: Avtoref. diss. … dok. med. nauk. Perm', 2004; 287 s.
  48. Mac A.N. Vnov' o preparatah «transfer-faktora» kak sredstve specificheskoj immunoterapii. Medicinskaja Immunologija. 2001; 1(2): 328–329.
  49. Rudakov O.B., Selemenev V.F., Rudakova L.V. Nizkomolekuljarnoe razdelenie i koncentrirovanie v uslovijah obrazovanija geterogennyh sistem (obzor). Sorbcionnye i hromatograficheskie processy. 2019; 19(4): 418–433.
  50. Volkova L.V. Ostraja i hronicheskaja toksichnost' antibakterial'nogo peptidnogo kompleksa. Biofarmacevticheskij zhurnal. 2022; 14(1): 51–54.
  51. Volkov A.G., Volkova L.V., Bezmaternyh I.S. Jeffektivnost' antibakterial'nogo lejkocitarnogo belkovo-peptidnogo kompleksa na klinicheskih shtammah mikroor-ganizmov. Vestnik PNIPU. Himicheskaja tehnologija i biotehnologija. 2022; 4: 17–25.
  52. Volkov A.G., Volkova L.V., Zarivchackij M.F. Antibakterial'noe dejstvie nizkomolekuljarnogo lejkocitarnogo peptidnogo kompleksa pri jeksperimental'nom peritonite. Biofarmacevticheskij zhurnal. 2021; 13(4): 39–41.
  53. Volkova L.V., Mal'gina D.Ju. Kul'tivirovanie perevivaemoj kletochnoj linii v prisutstvii deproteinizirovannogo gemoderivata. Biofarmacevticheskij zhurnal. 2017; 9(5): 1721.
  54. Volkova L.V., Semicheva A.I. Belkovo-peptidnyj kompleks, poluchennyj iz jeritromassy s ispol'zovaniem ul'trazvukovyh voln. Biofarmacevticheskij zhurnal. 2020; 12(4): 3–8.
  55. Volkova L.V., Grishina T.A., Volkov A.G. Sposob frakcionirovanija lejkocitarnyh belkov. Patent RF № 1737730 ot 02.12.2020.
  56. Volkova L.V., Grishina T.A., Volkov A.G. Frakcionnyj sostav lejkocitarnogo lizata i ego biologicheskie svojstva. Sovremennye problemy nauki i obrazovanija. 2019; 1: 1–7.
  57. Volkova L.V., Grishina T.A., Volkov A.G. Citotoksicheskie i toksikologicheskie harakteristiki novogo lejkocitarnogo polipeptida. Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. 2020; 23(5): 3–8.
  58. Volkova L.V., Volkov A.G., Hajbullin R.G. Sposob opredelenija protivomikrobnoj antivnosti peptidov. Patent RF № 2766346 от 15.03. 2022.
  59. Jenssen H., Hamill P., Hancock R.E. Peptide antimicrobial agents. Clinical Microbiology Reviews. 2006; 19(3): 491–511.
  60. Gaspar D., Veiga A.S, Castanho M.A. From antimicrobial to anticancer peptides. A review. Frontiers in Microbiology. 2013; 4: 294.