Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

MITOCHONDRIAL TRANSPLANTATION FOR THE TREATMENT OF ALZHEIMER'S DISEASE (REVIEW)

DOI: https://doi.org/10.29296/25877313-2023-11-11
Issue: 
11
Year: 
2023

D.Yu. Zhdanova
Ph.D. (Biol.), Research Scientist, Institute of Cell Biophysics, Russian Academy of Sciences – a Separate Division
of Federal Research Center «Pushchino Research Center for Biological Studies, Russian Academy of Sciences» (ICB RAS)
(Pushchino, Russia)
E-mail: ddzhdanova@mail.ru
A.V. Chaplygina
Research Scientist, Institute of Cell Biophysics, Russian Academy of Sciences – a Separate Division
of Federal Research Center «Pushchino Research Center for Biological Studies, Russian Academy of Sciences» (ICB RAS)
(Pushchino, Russia)

Alzheimer's disease (AD) is the most common form of dementia that primarily affects older adults and most often begins with memory loss followed by progressive impairment of behavioral and cognitive functions. Despite the fact that the main pathological signs of AD are considered to be extracel-lular deposits of beta-amyloid in the form of amyloid plaques and intracellular accumulation of hyperphosphorylated tau protein in the form of neurofi-brillary tangles, recently more and more attention at the cellular and molecular levels has been paid to other important processes accompanying de-velopment of the disease. In modern research of neurodegenerative diseases, the role of mitochondria is receiving increasing interest. The mitochon-drial cascade hypothesis suggests that mitochondrial dysfunction plays a key role in the progression of these neurodegenerative processes. Recent re-search shows that cells have the ability to exchange mitochondria among themselves. This process, known as horizontal mitochondrial transfer, al-lows cells to exchange both healthy and damaged or dysfunctional mitochondria, moving them from one cell to another for further repair or degrada-tion, which raises the possibility of using mitochondrial transplantation as a therapy for neurodegenerative diseases. In this article, we consider two aspects: horizontal mitochondrial transfer and mitochondrial transplantation. Horizontal mitochondrial transfer opens new horizons in understanding cellular communication and interactions. The methods of horizontal transfer of mitochondria discussed in the article are presented and described in detail. Additionally, we review the relevance and innovative nature of mitochondrial transplantation, a procedure in which healthy mitochondria are transferred to cells or organs with dysfunctional mitochondria. We will discuss various mitochondrial transplantation methods and their potential applications in medicine. The article will provide information on new research and perspectives in the field of mitochondrial biology and therapeutics, expanding the understanding of the function and role of mitochondria in living organisms.

Keywords: 
mitochondria
mitochondrial transplantation
Alzheimer's disease
mitochondrial dysfunction
intercellular transport of mitochondria.

References: 
  1. Asher S., Priefer R. Alzheimer's disease failed clinical trials. Life sciences. 2022; 120861.
  2. Elgenaidi I.S., Spiers J.P. Regulation of the phosphoprotein phos-phatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacology & therapeutics. 2019; 198: 68–89.
  3. Swerdlow R.H. The mitochondrial hypothesis: dysfunction, bioen-ergetic defects, and the metabolic link to Alzheimer's disease. Inter-national review of neurobiology. 2020; 154: 207–233.
  4. Lin M.T., Beal M.F. Mitochondrial dysfunction and oxida-tive stress in neurodegenerative diseases. Nature. 2006; 443: 787–795.
  5. Zorova L.D., Popkov V.A., Plotnikov E.Y., et al. Mitochondrial membrane potential. Analytical biochemistry. 2018; 552: 50–59.
  6. Mahrouf-Yorgov M., Augeul L., Da Silva C.C., et al. Mesenchymal stem cells sense mitochondria released from damaged cells as dan-ger signals to activate their rescue properties. Cell Death & Differ-entiation. 2017; 24: 1224–1238.
  7. Wang W., Zhao F., Ma X., et al. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Molecular Neurodegeneration. 2020; 15: 1–22.
  8. Iturria-Medina Y., Carbonell F.M., Sotero R.C., et al. Multifactorial causal model of brain (dis) organization and therapeutic interven-tion: Application to Alzheimer’s disease. Neuroimage. 2017; 152: 60–77.
  9. Hirai K., Aliev G., Nunomura A., et al. Mitochondrial abnormalities in Alzheimer's disease. Journal of Neuroscience. 2001; 21: 3017–3023.
  10. Chang C.Y., Liang M.Z., Chen L. Current progress of mitochondri-al transplantation that promotes neuronal regeneration. Translational neurodegeneration. 2019; 8: 1–12.
  11. Swerdlow R.H., Khan S.M. A “mitochondrial cascade hypothesis” for sporadic Alzheimer's disease. Medical hypotheses. 2004; 63: 8–20.
  12. Swerdlow R.H., Burns J.M., Khan S.M. The Alzheimer's disease mitochondrial cascade hypothesis. Journal of Alzheimer's Disease. 2010; 20: S265–S279.
  13. Müller W.E. Eckert A., Eckert G.P., et al. Therapeutic efficacy of the Ginkgo special extract EGb761® within the framework of the mitochondrial cascade hypothesis of Alzheimer’s disease. The World Journal of Biological Psychiatry. 2019; 20: 173–189.
  14. Cardoso S.M., Santos S., Swerdlow R.H., et al. Functional mito-chondria are required for amyloid β‐mediated neurotoxicity. The FASEB Journal. 2001; 15: 1439–1441.
  15. Reddy P.H. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer's disease. Experimental neurology. 2009; 218: 286–292.
  16. Zhang X.D., Wang Y., Wu J.C., et al. Down‐regulation of Bcl‐2 en-hances autophagy activation and cell death induced by mitochondri-al dysfunction in rat striatum. Journal of neuroscience research. 2009; 87: 3600–3610.
  17. Misrani A., Tabassum S., Yang L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Frontiers in aging neurosci-ence. 2021; 13: 57.
  18. Kumagai H., Miller B., Kim S. J., et al. Novel Insights into Mito-chondrial DNA: Mitochondrial Microproteins and mtDNA Vari-ants Modulate Athletic Performance and Age-Related Diseases. Genes. 2023; 14: 286.
  19. Mishra M., Raik S., Rattan V., et al. Mitochondria transfer as a po-tential therapeutic mechanism in Alzheimer’s disease-like patholo-gy. Brain Research. 2023; 1819: 148544.
  20. Hosseinian S., Pour P.A., Kheradvar A. Prospects of mitochondrial transplantation in clinical medicine: Aspirations and challenges. Mi-tochondrion. 2022; 65: 33–44.
  21. Berridge M.V., McConnell M.J., Grasso C., et al. Horizontal trans-fer of mitochondria between mammalian cells: beyond co-culture approaches. Current opinion in genetics & development. 2016; 38: 75–82.
  22. Spees J.L., Olson S.D., Whitney M.J., et al. Mitochondrial transfer between cells can rescue aerobic respiration. Proceedings of the Na-tional Academy of Sciences. 2006; 103: 1283–1288.
  23. Hayashida K., Takegawa R., Endo Y., et al. Exogenous mitochon-drial transplantation improves survival and neurological outcomes after resuscitation from cardiac arrest. BMC medicine. 2023; 21: 56.
  24. Babenko V.A., Silachev D.N., Popkov V.A., et al. Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery Molecules. 2018; 23: 687.
  25. Alexander J.F., Seua A.V., Arroyo L.D., et al. Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits Theranostics. 2021; 11: 3109.
  26. Picone P., Nuzzo D. Promising treatment for multiple sclerosis: mi-tochondrial transplantation. International Journal of Molecular Sci-ences. 2022; 23: 2245.
  27. Cowan D.B., Yao R., Thedsanamoorthy J.K., et al. Transit and in-tegration of extracellular mitochondria in human heart cells. Scien-tific reports. 2017; 7: 17450.
  28. Soundara Rajan T., Gugliandolo A., Bramanti P., et al. Tunneling nanotubes-mediated protection of mesenchymal stem cells: an up-date from preclinical studies. International Journal of Molecular Sciences. 2020; 21: 3481.
  29. Lin H.Y., Liou C.W., Chen S.D., et al. Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mito-chondrion. 2015; 22: 31–44.
  30. John A., Reddy P.H. Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid beta, P-tau and mitochondria. Ageing research reviews. 2021; 65: 101208
  31. Lampinen R., Belaya I., Saveleva L., et al. Neuron-astrocyte trans-mitophagy is altered in Alzheimer's disease. Neurobiology of Dis-ease. 2022; 170: 105753.
  32. Pickford F., Masliah E., Britschgi M., et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer dis-ease and regulates amyloid β accumulation in mice. The Journal of clinical investigation. 2008; 118: 2190–2199.
  33. Davis C.O., Kim K.-Y., Bushong E.A., et al. Transcellular degrada-tion of axonal mitochondria. Proceedings of the National Academy of Sciences. 2014; 111: 9633–9638.
  34. Hayakawa K., Esposito E., Wang X., et al. Transfer of mitochon-dria from astrocytes to neurons after stroke. Nature. 2016; 535: 551–555.
  35. Morales I., Sanchez A., Puertas-Avendano R., et al. Neuroglial transmitophagy and Parkinson's disease. Glia. 2020; 68: 2277–2299.
  36. Clemente-Suárez V.J., Martín-Rodríguez A., Yáñez-Sepúlveda R., et al. Mitochondrial Transfer as a Novel Therapeutic Approach in Disease Diagnosis and Treatment. International Journal of Molecu-lar Sciences. 2023; 24: 8848.
  37. Eugenin E., Camporesi E., Peracchia C. Direct cell-cell communi-cation via membrane pores, gap junction channels, and tunneling nanotubes: medical relevance of mitochondrial exchange Interna-tional journal of molecular sciences. 2022; 23: 6133.
  38. Yang J., Liu, L., Oda, Y., et al. Extracellular Vesicles and Cx43-Gap Junction Channels Are the Main Routes for Mitochondrial Transfer from Ultra-Purified Mesenchymal Stem Cells, RECs. In-ternational Journal of Molecular Sciences. 2023; 24: 10294.
  39. Rustom A., Saffrich R., Markovic I., et al. Nanotubular highways for intercellular organelle transport. Science. 2004; 303: 1007–1010
  40. Koyanagi M., Brandes R.P., Haendeler J., et al. Cell-to-cell con-nection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circulation re-search. 2005; 96: 1039–1041.
  41. Driscoll J., Gondaliya P., Patel T. Tunneling nanotube-mediated communication: a mechanism of intercellular nucleic acid transfer. International journal of molecular sciences. 2022; 23: 5487.
  42. Kloc M., Uosef A., Wosik J., et al. Virus interactions with the actin cytoskeleton—what we know and do not know about SARS-CoV-2. Archives of virology. 2022; 167: 737–749.
  43. Vignais M. L., Caicedo A., Brondello J.M., et al. Cell connections by tunneling nanotubes: effects of mitochondrial trafficking on tar-get cell metabolism, homeostasis, and response to therapy. Stem cells international. 2017; 2017: 6917941.
  44. Ahmad T., Mukherjee S., Pattnaik B., et al. Miro1 regulates intercel-lular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. The EMBO journal. 2014; 33: 994–1010.
  45. Sun X., Wang Y., Zhang J., et al. Tunneling-nanotube direction de-termination in neurons and astrocytes. Cell death & disease. 2012; 3: e438–e438.
  46. Zheng F., Luo Z., Lin X., et al. Intercellular transfer of mitochondria via tunneling nanotubes protects against cobalt nanoparticle-induced neurotoxicity and mitochondrial damage. Nanotoxicology. 2021; 15: 1358–1379.
  47. D’Amato M., Morra F., Di Meo I., et al. Mitochondrial transplanta-tion in mitochondrial medicine: current challenges and future per-spectives. International journal of molecular sciences. 2023; 24: 1969.
  48. van Niel G., Carter D.R., Clayton A., et al. Challenges and direc-tions in studying cell–cell communication by extracellular vesicles. Nature Reviews Molecular Cell Biology. 2022; 23: 369–382.
  49. Cheng L., Hill A.F. Therapeutically harnessing extracellular vesi-cles. Nature Reviews Drug Discovery. 2022; 21: 379–399.
  50. Jeppesen D. K., Zhang Q., Franklin J.L., et al. Extracellular vesi-cles and nanoparticles: Emerging complexities. Trends in Cell Biol-ogy. 2023; 33: 667–681.
  51. Peruzzotti-Jametti L., Bernstock J.D., Willis C.M., et al. Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS biology. 2021; 19: e3001166.
  52. Zhang T., Miao C. Mitochondrial transplantation as a promising therapy for mitochondrial diseases. Acta Pharmaceutica Sinica B. 2023; 13: 1028–1035.
  53. Sheehan J.P., Swerdlow R.H., Miller S.W., et al. Calcium homeo-stasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s dis-ease. Journal of Neuroscience. 1997; 17: 4612–4622.
  54. Nitzan K., Benhamron S., Valitsky M., et al. Mitochondrial transfer ameliorates cognitive deficits, neuronal loss, and gliosis in Alz-heimer’s disease mice. Journal of Alzheimer's Disease. 2019; 72: 587–604.
  55. Ma H., Jiang T., Tang W., et al. Transplantation of platelet-derived mitochondria alleviates cognitive impairment and mitochondrial dysfunction in db/db mice. Clinical Science. 2020; 134: 2161–2175.
  56. Adlimoghaddam A., Benson T., Albensi B.C. Mitochondrial trans-fusion improves mitochondrial function through up-regulation of mitochondrial complex II protein subunit SDHB in the Hippocam-pus of aged mice. Molecular Neurobiology. 2022; 59: 6009–6017.
  57. Zhang Z., Sheng H., Liao L.I., et al. Mesenchymal stem cell-conditioned medium improves mitochondrial dysfunction and sup-presses apoptosis in okadaic acid-treated SH-SY5Y cells by extra-cellular vesicle mitochondrial transfer. Journal of Alzheimer's Dis-ease. 2020; 78: 1161–1176.
  58. Bertero E., O’Rourke B., Maack C. Mitochondria do not survive calcium overload during transplantation. Circulation research. 2020; 126: 784–786.
  59. McCully J.D., Emani S.M., Del Nido P.J. Letter by McCully et al Regarding Article,"Mitochondria do not survive calcium overload". Circulation research. 2020; 126: e56–e57.
  60. Bobkova N.V., Zhdanova D.Y., Belosludtseva N.V., et al. Intranasal administration of mitochondria improves spatial memory in olfacto-ry bulbectomized mice. Experimental Biology and Medicine. 2022; 247: 416–425.
  61. Park A., Oh M., Lee S.J., et al. Mitochondrial transplantation as a novel therapeutic strategy for mitochondrial diseases. International journal of molecular sciences. 2021; 22: 4793.
  62. Pacak C.A., Preble J.M., Kondo H., et al. Actin-dependent mito-chondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function. Biology open. 2015; 4: 622–626.