Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

<

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

DISCRETE OPTIMIZATION OF THE IMPLEMENTATION STAGES OF PHARMACEUTICAL DEVELOPMENT FOR A SPRAY TREATMENT FOR ORAL DISEASES

DOI: https://doi.org/10.29296/25877313-2024-04-03
Issue: 
4
Year: 
2024

D.O. Shatalov
Ph.D. (Pharm.),
MIREA – Russian Technological University (Moscow, Russia)
E-mail: shatalov_d@mirea.ru; https://orcid.org/0000-0003-4510-1721
S.A. Kedik
Dr.Sc. (Tech.), Professor,
MIREA – Russian Technological University (Moscow, Russia)
https://orcid.org/0000-0003-2610-8493
D.A. Akhmedova
Assistant,
MIREA – Russian Technological University (Moscow, Russia)
https://orcid.org/0000-0002-0951-939X
A.I. Gromakova
Dr.Sc. (Pharm), Chief Research Scientist,
All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (Moscow, Russia)
https://orcid.org/0000-0001-8984-0724
Yu.A. Koroleva
Student,
MIREA – Russian Technological University (Moscow, Russia)
https://orcid.org/0000-0001-8092-1990
A.Yu. Dolgovskaya
Student,
MIREA – Russian Technological University (Moscow, Russia)
Kharchenko S.M.
Student,
MIREA – Russian Technological University (Moscow, Russia)
https://orcid.org/0009-0002-3398-3050
D.D. Kirillova
Student,
MIREA – Russian Technological University (Moscow, Russia)
https://orcid.org/0000-0002-3055-1116
D.S. Minenkov
Senior Research Scientist,
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences (Moscow, Russia)
https://orcid.org/0000-0001-6432-8134
A.V. Nikulin
Associate Professor,
MIREA – Russian Technological University (Moscow, Russia)
https://orcid.org/0009-0004-2755-2734

Introduction. All over the world more than 3.5 billion people suffer from oral diseases, which can lead to endogenous infectious diseases and create conditions for external infections. The growing antimicrobial resistance of bacterial strains is a global health threat. Oligoalkyleneguanidine polymers may be promising compounds to solve this problem. The spray form for the application of these substances is the most optimal. The aim of the study is to apply discrete optimization to implement the stages of pharmaceutical development of a spray based on branched oli-gohexamethyleneguanidine for the treatment of oral diseases. Material and methods. Experiments are carried out using various equipment and samples with different compositions have been developed. The implementation of the pharmaceutical development stages was carried out using a discrete optimization algorithm. Results. When implementing discrete optimization in pharmaceutical development, it is necessary to prioritize criteria and limitations using the target quality profile of the drug being developed. As a result of the optimization cycles carried out, the optimal composition was selected, which corresponds to the target quality profile, including such parameters as pH, dynamic viscosity, sterilizing filtration, adhesion of the formulations to the oral mucosa and the spray torch. A discrete optimization was carried out, taking into account the wetting edge angle and particle size distribution. The optimal com-position was sample No. 8, which has pseudoplastic properties, provides unhindered spraying and prevents the composition from draining from the mucous membrane of the oral cavity. Conclusion. During the study, the optimal ratio of components was determined and the development of a spray based on oligohexamethyleneguani-dine with the implementation of stages of pharmaceutical development for discrete optimization was proposed.

Keywords: 
discrete optimization
pharmaceutical development
oral spray
oligohexamethyleneguanidine.

References: 
  1. Global oral health status report: towards universal health coverage for oral health by 2030. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.
  2. WHO: Antimicrobal resistance [Jelektronnyj resurs] URL: https://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance (data obrashhenija 22.11.2023).
  3. Rasporjazhenie Pravitel'stva RF ot 25 sentjabrja 2017 g. № 2045-r O Strategii preduprezhdenija rasprostranenija antimikrobnoj rezistentnosti v RF na period do 2030 g.
  4. Shatalov D.O., Kedik S.A., Zhavoronok E.S. i dr. Opyt i perspektivy razvitija ispol'zovanija sinteticheskih antimikrobnyh veshhestv. Vse materialy. Jenciklopedicheskij spravochnik, 2016; 8: 14.
  5. Gubin M.M. Tehnologija lekarstv po GMP: sprei i ajerozoli. Tver', 2012. 176 s.
  6. Kornjushko V.F., Nikolaeva O.M., Panov A.V. i dr. Upravlenie kachestvom himiko-tehnologicheskogo processa nepreryvnogo sinteza aktivnoj farmacevticheskoj substancii lekarstvennyh soedinenij v protochnyh mikroreaktorah. Tonkie himicheskie tehnologii. 2021; 16(3): 252–266.
  7. Shatalov D.O., Kedik S.A., Ajdakova A.V. i dr. Sovremennye podhody k razrabotke gotovyh lekarstvennyh form dlja lechenija zabolevanij polosti rta (obzor). Biofarmacevticheskij zhurnal. 2019; 11; 4; 15–28.
  8. Shatalov D.O, Kedik S.A., Krupenchenkova N.V., et al. Acute Toxicity of the Pharmaceutical Substance Branched Oligohexamethyleneguanidine Hydrochloride at Mice and Rats after Intragastric Administration. American Journal of Biomedical Science & Research. 2019; 4(2): 76–77.
  9. Pokrovskij V.M., Korot'ko G.F. Fiziologija cheloveka. V 2-h tomah. Tom 1 M.: Medicina. 1997. 448 s.
  10. Kinlok Je. Adgezija i adgezivy: Nauka i tehnologija. Pod red. L. M. Pritykina. M.: Mir, 1991. 484 s.
  11. Krahmalev I.S. Razrabotka sostava, tehnologii i norm kachestva spreja protivovospalitel'nogo dejstvija: avtoref. diss. ... kand. farm. nauk: 14.04.01. Volgograd, 2013. 115 с.