Download full text PDF

M.N. Kondratiev Dr.Sc. (Biol.), Professor, Department of Plant Physiology, Russian Timiryazev State Agrarian University (Moscow) E-mail: A.N. Skorokhodova Post-graduate Student, Department of Plant Physiology, Russian Timiryazev State Agrarian University (Moscow) Ju.S. Larikova Ph.D. (Biol.), Department of Plant Physiology, Russian Timiryazev State Agrarian University (Moscow) D.P. Evdokimova Post-graduate Student, Department of Plant Physiology, Russian Timiryazev State Agrarian University (Moscow)

The control of weed plants in agroecosystems forces scientists to search for new ways to solve this problem, as the economic losses caused by weeds may be higher than those caused by other pests. The studies carried out in the last 10−15 years have shown the prospects of using of secondary compounds formed by plants as biogerbicides and pesticides in agricultural production in different countries of the world. The advantage of their use in crop production practice is based on their ecological safety, both in terms of rapid decomposition in the environment, and the absence of a negative effect on the quality of crop production. Of particular interest as po-tential sources of biogerbicides are medicinal plants, which is proved by studies at the cellular, subcellular and molecular levels. The main classes of secondary metabolites are established and their properties are described, which depend on the complex of internal fac-tors (type, age, physiological state of the plant) and external factors (temperature, intensity of light, nutritional regime) of environ-mental factors. However, the data obtained so far on the chemical structure of secondary metabolites do not make it possible to syn-thesize them by chemical means, and, therefore, limits the possibilities of testing their allelopathic potential.

medicinal plants
secondary metabolites

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

  1. Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective // Phytochemistry. 2003. № 64: R. 3−19.
  2. Wink M. Plant secondary metabolism: Diversity, function and its evolution // Nat. Prod. Commun. 2008. № 3. R. 1205−1216.
  3. Ratsch S. The Encyclopedia of Psychoactive Plants: Ethnopharmacology and its Applications; Park Street Press:
  4. South Paris, ME, USA, 2005. pp. 944.
  5. Russo E. Handbook of Psychotropic Herbs: A Scientific Analysis of Herbal Remedies for Psychiatric Conditions.
  6. Haworth Press: Binghampton, NY, USA. 2001. R. 285.
  7. Kondrat'ev M.N., Larikova Ju.S., Davydova A.N. Potentsial'nye biogerbitsidnye svojstva nekotoryh lekarstvennyh rastenij // Voprosy biologicheskoj, meditsinskoj i farmatsevticheskoj himii. 2016. № 6 (Kondrat’ev M.N., Larikova Ju.S., Davydova A.N. Potencial’nye biogerbicidnye svojstva nekotoryh lekar-stvennyh rastenij // Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. 2016. № 6).
  8. Kondrat'ev M.N., Larikova Ju.S. Davydova A.N. Vtorichnye soedinenija lekarstvennyh rastenij kak potentsial'naja osnova dlja sozdanija biogerbitsidov // Voprosy biologicheskoj, meditsinskoj i farmatsevticheskoj himii. 2017. № 6 (Kondrat’ev M.N., Larikova Ju.S. Davydova A.N. Vtorichnye soedinenija lekarstvennyh rastenij kak potencial’naja osnova dlja sozdanija biogerbicidov // Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. 2017. № 6).
  9. Wink M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites // Medicines. 2015. № 2. R. 251−286.
  10. Van Wyk B.-E., Wink M. Medicinal Plants of the World; Timber Press: Portland, OR, USA. 2004. 480 p.
  11. Van Wyk, B.-E., Wink C., Wink M. Handbuch der Arzneipflanzen, 3-rd ed. Wissenschaftliche Verlagsgesellschaft: Stuttgart, Germany. 2015. 520 p.
  12. Aleinein R., Scậfer H., Wink M. Secretory ranalexin produced in recombinant Pichia pastoris exhibits additive bactericidal activity when used in combination with polymyxin B or linezolid against multi-drug resistant bacteria // Biotechnol. J. 2014. № 9. R. 110−119.
  13. Hamoud R., Reichling J., Wink M. Synergistic antibacterial activity of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria // J. Pharm. Pharmacol. 2015. № 67. R. 264−273.
  14. Sun Y., Wink M. Tetrandrine and fangchinoline, bisbenzylisoquinoline alkaloids from Stephania tetrandra, are can reverse multidrug resistance by inhibiting P-glycoprotein activity in multidrug resistant human cancer cells // Phytomedicine. 2014. № 21. R. 1110−1119.
  15. Wink M., Schimmer O. Molecular modes of action of defensive secondary metabolites // In Functions and Biotechnology of Plant Secondary Metabolites. Annual Plant Reviews 39; M. Wink (Ed.) Wiley-Blackwell: London, UK, 2010. R. 21−161.
  16. Wink M. Molecular modes of action of drugs used in phytomedicine // In Herbal Medicines: Development and Validation of Plant-derived Medicines for Human Health; G. Bagetta, M. Cosentino, M. Corasaniti, S. Sakurada (Eds.) Taylor & Francis: London, UK. 2012. R. 161−172.
  17. Fu Y., Li S., Zu Y., Yang G., Yang Z., Luo M., Jiang S., Wink M., Efferth T. Medicinal chemistry of paclitaxel and its analogues // Curr. Med. Chem. 2009. № 16. R. 3966−3985.
  18. Teuscher E., Melzig M.F., Lindequist U. Biogene Arzneimittel. Ein Lehrbuch der Pharmazeutischen Biologie. 7-th ed. Wissenschaftliche Verlagsgesellschaft: Stuttgart, Germany. 2012. 839 p.
  19. Wink M., van Wyk B.-E. Mind-Altering and Poisonous Plants
  20. of the World. Timber Press: Portland, OR, USA. 2010. 464 p. 18. Wink M. Molecular modes of action of cytotoxic alkaloids − From DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance // In the Alkaloids; G. Cordell (Ed.). Elsevier: Amsterdam, the Netherlands. 2007. V. 64. R. 1–48.
  21. Van Wyk B.-E., Wink M. Phytomedicines, Herbal drugs and Poisons. Briza, Kew Publishing, Cambridge University Press: Cambridge, UK. 2015. 305 p.
  22. Fan X., Schdfer H., Reichling J., Wink M. Antibacterial properties of the antimicrobial peptide Ib-AMP4 from Impatiens balsamina produced in E. coli // Biotechnol. J. 2013. № 8. R. 1213−1220.
  23. Duke J.A. Handbook of Medicinal Herbs. 2-nd ed. CRC Press: Boca Raton, FL, USA. 2002. 896 p.
  24. Teuscher E., Lindequist U. Biogene Gifte − Biologie, Chemie, Pharmakologie, Toxikologie. 3r-ded. Wissenschaftliche Verlagsgesellschaft: Stuttgart, Germany. 2010. 963 p.
  25. Frenkel N., Sudji R., Wink M., Tanaka M. Mechanistic Investigation of Interactions between the Steroidal Saponin Digitonin and Cell Membrane Models // J. Phys. Chem. 2014. № 118. R. 14632−14639.
  26. Dewick P.M. Medicinal Natural Products. Wiley: Chichester, UK. 2001. 514 p.
  27. Qasem J., Foy C. Weed allelopathy, its ecological impacts and future prospects: a review // Journal of Crop Production. 2001. № 4. R. 43−92.
  28. Dolling A., Zackrisson O., Nilsson M. Seasonal variation in phytotoxicity of bracken (Pteridium aquilinum L. Kuhn) // Journal of Chemical Ecology. 1994. № 20. R. 3163−3172.
  29. Inderjit. Soil: environmental effects on allelochemical activity // Agronomy Journal. 2001. № 93. R. 79−84.
  30. Inderjit. Soil microorganisms: an important determinant of allelopathic activity // Plant and Soil. 2005. № 21A. R. 227−236.
  31. Batish D., Arora K., Singh H., Kohli R. Potential utilization of dried powder of Tagetes minuta as a natural herbicide for managing rice weed // Crop Protection. 2007. № 26. R. 566−571.
  32. Oerke E.-C., Dehne H.-W., Schonbeck F. Crop production and crop protection: Estimated losses in major food and cash crops // Elsevier Science Publishers. 2012. B.V. Amsterdam. 829 p.
  33. Soltys D., Krasuska U., Bogatek R., Gniazdowska A. Allelochemicals as Bioherbicides − Present and Perspectives // In book: Herbicides − Current Research and Case Studies in Use, Chapter: 20. Publisher: In Tech, Editors: A.J. Price, J.A. Kelton. 2013. R. 517−542.
  34. Fujii Y. Screening and future exploitation of allelopathic plants as alternative herbicides with special reference to hairy vetch // Journal of Crop Production. 2001. № 4. R. 257−275.
  35. Hong H ., Xuan D., Tsuzuki E., Terao H., Matsuo M., Khanh D. Screening for allelopathic potential of higher plants from Southeast Asia // Crop Protection. 2003. № 22. R. 829−836.
  36. Singh P., Batish R., Kohli K. Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management // Plant Sciences. 2003. № 22. R. 239−311.
  37. Mekku S. Allelopathic effects of blue gum {Eucalyptus globules), sweet basil (Ocimum basilicum), wormwood {Artemisia annua) and sweet potato (Ipomoea batatas) extracts on seeds germination and seedling development of some weed species // Egyptian Journal of Applied Science. 2008. № 23. R. 95−106.
  38. Nguyen K., Arseault P., Wethers P. Trichomes + roots + ROS = = artemisinin: regulating artemisinin biosynthesis in Artemisia annua L. in vitro cellular and developmental // Biology- Plant. 2011. № 47. R. 329−338.
  39. Jessing K., Cedergreen N., Mayer P., Libous-bailey L., Strobel W., Rimando A., Duke O. Loss of artemisinin produced by Artemisia annua L. to the soil environment // Industrial Crops and Products. 2013. R. 43−132.
  40. Bharati A., Kar M., Sabat S. Artemisinin inhibits chloroplast electron transport activity: mode of action // PLOS ONE. 2012. e38942. [].
  41. Dayan F., Howell J., Marais J., Ferreira D., Koivunen M. Manuka oil, a natural herbicide with preemergence activity // Weed Science. 2011. № 59. R. 464−469.