THE IMPACT OF PERINATAL COBALT EXPOSURE ON IRON, COPPER, MANGANESE, AND ZINC METABOLISM IN IMMATURE ICR MICE

DOI: https://doi.org/10.29296/25877313-2019-03-01
Download full text PDF
Issue: 
3
Year: 
2019

Y. Gluhcheva Ph.D., The Institute of Experimental Morphology, Pathology and Anthropology with Museum, Acad. ( Sofia, Bulgaria) A.A. Tinkov Ph.D. (Med.)., P.G. Demidov Yaroslavl State University; RUDN University (Moscow) O.P. Ajsuvakova Ph.D. (Chem.), P.G. Demidov Yaroslavl State University; RUDN University (Moscow) А.Р. Грабеклис Ph.D. (Biol.), P.G. Demidov Yaroslavl State University; RUDN University (Moscow) E Pavlova Ph.D., The Institute of Experimental Morphology, Pathology and Anthropology with Museum (Sofia, Bulgaria) E Petrova Ph.D., The Institute of Experimental Morphology, Pathology and Anthropology with Museum (Sofia, Bulgaria ) Yu.V. Zaitseva Ph.D. (Biol.), P.G. Demidov Yaroslavl State University I. Vladov Ph.D., The Institute of Experimental Morphology, Pathology and Anthropology with Museum (Sofia, Bulgaria ) A.V. Skalny Dr.Sc. (Med.), Professor, P.G. Demidov Yaroslavl State University; RUDN University (Moscow)

The aim of the study was to investigate the effect of perinatal cobalt exposure (75 mg / kg / day CoCl2•6H2O to pregnant and lactating females) on the exchange of copper, iron, manganese, and zinc in early-aged ICR mice (18 days). Cobalt and other metals were determined by mass spectrometry with inductively coupled argon plasma (ICP-DRC-MS) after microwave digestion of the samples. It is established that perinatal cobalt exposure leads to a 68-, 3.8-, 11.3-, 41.3-, and 162-fold increase of metal content in kidneys, spleen, muscle, liver, and erythrocytes, respectively. Cobalt intake was also ac-companied by a significant increase of the iron content in the kidney and liver by 27% and 15%, respectively. A significant increase of the copper level in the spleen parenchyma (+ 24%) and red blood cells (2-fold) was also noted. Co-induced manganese accumulation exceeded the corresponding control values by a factor of more than 2 for spleen, liver and erythrocytes, whereas the increase in muscle content was 3-fold. The elevation of zinc content in spleen, skeletal muscles, liver, and erythrocytes was 45%, 11%, 10%, and 16% as compared to the corresponding values in the control group. It is sup-posed the effect of cobalt on the iron, copper, manganese and selenium metabolism may be mediated by cobalt-induced stimulation of hypoxia-inducible factor 1 (HIF-1) with a subsequent effect on the activity of metal transporters (DMT-1, ferroportin) including a modulation of hepcidin production.

Keywords: 
cobalt
iron
manganese
zinc
copper

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Skalnaya M.G., Skalny A.V. Essential trace elements in human health: a physician’s view. Tomsk: Publishing House of Tomsk State University. 2018.
  2. Czarnek K., Terpiłowska S., Siwick, A.K. Selected aspects of the action of cobalt ions in the human body // Central-European journal of immunology. 2015; 40(2): 236.
  3. Skalny A.V., Zaitseva I.P., Gluhcheva Y.G., Skalny A.A., Achkasov E.E., Skalnaya M.G., Tinkov A.A. Cobalt in athletes: hypoxia and doping – new crossroads // J Appl Biomed. 2018; https://doi.org/10.32725/jab.2018.003.
  4. Detkov V.Ju., Skal'nyj A.V., Karganov M.Ju., Cherepov A.B., Medvedeva Ju.S., Glazov M.Ju., Isankina L.N. Defitsit kobal'ta u detej s nizkim urovnem funktsional'nyh rezervov // Tehnologii zhivyh sistem. 2013; 10(7): 022-028. (Detkov V.Yu., Skalny A.V., Karganov M.Yu., Cherepov A.B., Medvedeva Yu.S., Glazov M.Yu., Isankina L.N. Cobalt deficiency in children with low functional reserve // Technologies of Living Systems. 2013; 10(7): 022-028 (In Russ.)).
  5. Simonsen L.O., Harbak H., Bennekou P. Cobalt metabolism and toxicology—a brief update // Science of the Total Environment. 2012; 432: 210-215.
  6. Leyssens L., Vinck B., Van Der Straeten, C., Wuyts F., Maes L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects // Toxicology. 2017; 387: 43-56.
  7. Mitchell C. J., Shawki A., Ganz T., Nemeth E., Mackenzie B. Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc // American Journal of Physiology-Cell Physiology. 2013.
  8. Kambe T., Yamaguchi-Iwai Y., Sasaki R., Nagao M. Overview of mammalian zinc transporters // Cellular and molecular life sciences CMLS. 2004; 61(1): 49-68.
  9. Ortega R., Bresson C., Fraysse A., Sandre C., Devès G., Gombert C., Moretto P. Cobalt distribution in keratinocyte cells indicates nuclear and perinuclear accumulation and interaction with magnesium and zinc homeostasis // Toxicology letters. 2009; 188(1): 26-32.
  10. Simonsen L.O., Brown A.M., Harbak H., Kristensen B.I., Bennekou P. Cobalt uptake and binding in human red blood cells // Blood Cells, Molecules, and Diseases. 2011; 46(4): 266-276.
  11. Leggett R.W. The biokinetics of inorganic cobalt in the human body // Science of the total environment. 2008; 389(2-3): 259-269.
  12. Haase V.H. Regulation of erythropoiesis by hypoxia-inducible factors //Blood reviews. 2013; 27(1): 41-53.
  13. Shah Y.M., Xie L. Hypoxia-inducible factors link iron homeostasis and erythropoiesis // Gastroenterology. 2014; 146(3): 630-642.
  14. Qian Z. M., Mei Wu X., Fan M., Yang L., Du F., Yung W.H., Ke Y. Divalent metal transporter 1 is a hypoxia‐inducible gene. // Journal of cellular physiology. 2011; 226(6): 1596-1603.
  15. Garrick M.D. Regulation of Divalent Metal-Ion Transporter-1 Expression and Function // Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals. 2017; 227-238.
  16. Latunde Dada G.O., Shirali S., McKie A.T., Simpson R.J., Peters T.J. Effect of transition metal ions (cobalt and nickel chlorides) on intestinal iron absorption // European journal of clinical investigation. 2004; 34(9): 626-630.
  17. Murphy B.J., Kimura T., Sato B.G., Shi Y., Andrews G.K. Metallothionein induction by hypoxia involves cooperative interactions between metal-responsive transcription factor-1 and hypoxia-inducible transcription factor-1α // Molecular Cancer Research. 2008; 6(3): 483-490.
  18. Prashanth L., Kattapagari K.K., Chitturi R.T., Baddam V.R.R., Prasad L.K. A review on role of essential trace elements in health and disease // Journal of dr. ntr university of health sciences. 2015; 4(2): 75.