Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

AGE DEPENDENCY OF ESSENTIAL AND TOXIC ELEMENT LEVELS IN HAIR OF FREQUENTLY ILL CHILDREN

DOI: https://doi.org/10.29296/25877313-2019-08-08
Download full text PDF
Issue: 
8
Year: 
2019

L.N. Isankina Head Physician, Children's City Clinical Hospital № 5 named after N.F. Filatova (St. Petersburg) Yu.N. Lobanova Ph.D. (Biol.), Peoples ' Friendship University of Russia (Moscow) V.P. Volok Assistent, Peoples ' Friendship University of Russia; Junior Research Scientist, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biologicical Products of Russian Academy of Science (Moscow) E-mail: viktor.p.v@mail.ru V.I. Kulesh Physician, ANO Centre for Biotic Medicine (Moscow) A.V. Skalny Dr.Sc. (Med.), Professor, Peoples ' Friendship University of Russia (Moscow); Trace Element - Institute for UNESCO (Lyon, France)

Both toxic and essential elements may play a significant role in the immune system disturbances in frequently ill children (FIC), but the age de-pendency of this influence is not well understood. Aim. The goal of this study was to measure the levels of clinically relevant essential and toxic elements in hair of FIC and to assess their corre-lation with the age of the subjects. Materias and Methods. Hair samples of 200 children were assayed for the levels of chemical elements using inductively coupled plasma mass spectrometry (ICP-MS) on a NexION 300D spectrometer after microwave decomposition. Results. In comparison with healthy children, the younger group of FIC (2 to 7 y/o) was characterized by a significant increase in the hair levels of arsenic (+ 24%), selenium (+ 11%) and potassium (2.5 times), while the zinc level was lower (- 27%). In the group of FIC over 7 years old the level of arsenic was similarly higher than in the control group (+ 30%). A significant increase of the levels of calcium (+ 27%), cobalt (+ 50%) and selenium (+ 18%) relative to the corresponding control values was found only for the older group. Correlation analysis demonstrated that high susceptibility to colds is associated with changes in the age dynamics of the elemental profile. Conclusions. Obtained results indicate the existence of pronounced age-dependent disturbances in the elemental status of children susceptible to frequent respiratory infections.

Keywords: 
frequently ill children
respiratory infections
trace elements
toxic elements
zinc
copper
arsenic

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. REFERENCES
  2. Zaplatnikov A.L., Girina A.A. K probleme «chasto boleyushchih detej» // Pediatriya. Zhurnal im. G.N. Speranskogo, 2015; 94(4): 215–221.
  3. Wessels I., Maywald M., Rink L. Zinc as a gatekeeper of immune function // Nutrients. 2017; 9(12): 1286.
  4. Maares M., Haase H. Zinc and immunity: An essential interrelation // Archives of biochemistry and biophysics. 2016; 611: 58–65.
  5. Huang Z., Rose A.H., Hoffmann P.R. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities // Antioxidants & re-dox signaling. 2012; 16(7): 705–743.
  6. Ganz T., Nemeth E. Iron homeostasis in host defence and inflammation // Nature Reviews Immunology. 2015; 15(8): 500.
  7. Hultman P., Pollard K.M. Immunotoxicology of metals. In Handbook on the Toxicology of Metals (Fourth Edition) / Academic Press, 2015; P. 379398.
  8. Farzan S.F., Korrick S., Li Z. et al. In utero arsenic exposure and infant infection in a United States cohort: a prospective study // Environmental research. 2013; 126: 24–30.
  9. Luchaninova V.N., Trankovskaya L.V., Zajko A.A. Harakteristika i vzaimosvyaz' elementnogo statusa i nekotoryh immunobiologicheskih pokazatelej u detej, chasto boleyushchih ostrymi respiratornymi zabolevaniyami // Pediatriya. Zhurnal im. G.N. Speranskogo. 2004; 83(4): 22–26.
  10. Abaturov A.Е., Gerasimenko O.N., Kvitnickaya T.P. Rol' mikro- i makroelementov v profilaktike chastyh respira-tornyh zabolevanij u detej // Zdorov'e rebenka. 2008; 5: 14.
  11. Skalny A.V., Skalnaya M.G., Demidov V.A., Grabeklis A.R., Berezkina Е.S., Lobanova Yu.N., Serebryanskij Е.P. Soderzhanie himicheskih elementov v volosah detskogo naseleniya Moskvy: svyaz' s zabolevaemost'yu (1995–2004 gg.) // Mikroelementy v medicine. 2016; 17(1): 10–18.
  12. Bonaventura P., Benedetti G., Albarède F., Miossec P. Zinc and its role in immunity and inflammation // Autoimmunity reviews. 2015; 14(4): 277–285.
  13. Roth D.E., Richard S.A., Black R.E. Zinc supplementation for the prevention of acute lower respiratory infection in children in developing countries: meta-analysis and meta-regression of randomized trials // International journal of epidemiology. 2010; 39(3): 795–808.
  14. Dangleben N.L., Skibola C.F., Smith M.T. Arsenic immunotoxicity: a review // Environmental Health. 2013; 12(1): 73.
  15. Raqib R., Ahmed S., Sultana R., Wagatsuma Y., Mondal D., Hoque A.M., Nermell B., Yunus M., Roy S., Persson L.A., Arifeen S.E., Moore S., Vahter M. Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh // Toxicology letters. 2009; 185(3): 197–202.
  16. Soto-Peña G.A., Luna A.L., Acosta-Saavedra L. P. Conde-Moo, L. Lopez-Carrillo, M.E. Cebrian, M. Bastida, E.S. Calderon-Aranda, Vega L. Assessment of lymphocyte subpopulations and cytokine secretion in children exposed to arsenic // The FASEB journal. 2006; 20(6): 779–781.
  17. Sun H.J., Rathinasabapathi B., Wu B. Luo J., Pu L.-.P, Ma L.Q. Arsenic and selenium toxicity and their interactive effects in humans // Environment International. 2014; 69: 148–158.
  18. Rahman M.T., Karim M.M. Metallothionein: a potential link in the regulation of zinc in nutritional immunity // Biological trace element research. 2018; 182(1): 1–13.
  19. Bjørklund G. The role of zinc and copper in autism spectrum disorders // Acta Neurobiol Exp (Wars). 2013; 73(2): 225–236.
  20. Kambe T., Weaver B.P., Andrews G.K. The genetics of essential metal homeostasis during development // Genesis. 2008; 46(4): 214–228.
  21. Ho E., Dukovcic S., Hobson B., Wong C.P., Miller G., Hardin K., Tanguay R.L. Zinc transporter expression in zebrafish (Danio rerio) during development // Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2012; 155(1): 26–32.
  22. Zatulovskaia Y.A., Ilyechova E.Y., Puchkova L.V. The features of copper metabolism in the rat liver during development // PloS One. 2015; 10(10): e0140797.