Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

THE CURRENT STATE AND PROSPECTS OF USING PROTEOMICS METHODS IN CHEMICAL-TOXICOLOGICAL ANALYSIS (REVIEW)

DOI: https://doi.org/10.29296/25877313-2019-09-04
Download full text PDF
Issue: 
9
Year: 
2019

V.A. Kutyakov Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a Course of Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation (Krasnoyarsk) E-mail: victor-koutjakov@yandex.ru E.V. Kharitonova Ph.D. (Pharm.), Senior Lecturer, Department of Biological Chemistry with a Course of Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation (Krasnoyarsk) E-mail: ekaterinav1201@gmail.com R.Ya. Olovyannikova Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a Course of Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation (Krasnoyarsk) E-mail: Olovyannikova2010@yandex.ru A.B. Salmina Dr.Sc. (Med.), Professor, Head of the Department of Biological Chemistry with a Course of Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation (Krasnoyarsk) E-mail: allasalmina@mail.ru

Purpose. The authors analyzed the current state and the possibility of using proteomic methods during chemical-toxicological studies. The factors that impede the detection, identification and determination of toxicants in complex biological matrices are indicated. At the same time, the peculiarities of modern expert practice, which determine the introduction of high-tech techniques that differ from those currently used, are noted. The possibility of using dysregulation of gene expression as an alternative method of identifying substances that are harmful to health is con-sidered. As a diagnostic method for diseases of chemical etiology (including substance abuse), it is possible to apply the methods of proteomics. The article provides a comparative description of sample preparation methods, analysis, their advantages and possible disadvantages. The conclusion is made about the need to create biobanks of objects that can serve as benchmarks for comparison in subsequent studies. Emphasis is placed on the need to improve computational analysis tools for processing toxicoproteome data, the creation of mathematical models of poisoning, along with the development of analytical methods. Taking into account the peculiarities of the chemical-toxicological analysis, the authors proposed a scheme (methodology) of a proteomic study of a limited list of objects (blood, urine). Conclusion. Based on the analysis of literature data, the authors of the article propose a new promising tool for carrying out chemical-toxicological studies, which has undoubted advantages - personalized analytical toxicology.

Keywords: 
biomarkers
proteomics
toxicoproteomics
personalized analytical toxicology
chemical-toxicological analysis

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Demidov E.A., Pel'tek S.E. Proteomika // Vavilovskij zhur-nal genetiki i selektsii. 2014. T. 18. № 1. S. 166–174 (Demidov E.A., Pel'tek S.E. Proteomika // Vavilovskij zhurnal genetiki i sele-kcii. 2014. T. 18. № 1. S. 166–174).
  2. Kobeissy F., Mouhieddine T. H., Nokkar A., Itanid M., Mouhied-dinee M., Zhanga Z., Zhuf R., Golda M. S., Wanga K. K., Mechref Y. Recent updates on drug abuse analyzed by neuroproteomics stud-ies: Cocaine, Methamphetamine and MDMA // Translational Prote-omics. 2014; 3: 331–352.
  3. Titz B., Elamin A., Martin F., Schneider T., Dijon S., Ivanov N. V., Hoeng J., Peitsch M. Proteomics for systems toxicology // Biotech-nology Journal. 2014; 11(18): 73–90.
  4. Sajic T., Yansheng L., Aebersold R. Using data-independent, high-resolution mass spectrometry in protein biomarker research: Per-spectives and clinical applications // Proteomics Clin. Appl. 2015; 9: 307–321.
  5. Shi T., Song E., Nie S., Rodland K.D., Liu T., Qian W.-J., Smith R.D. Advances in targeted proteomics and applications to biomedi-cal research // Proteomics. 2016; 16(15-16): 2160–2180.
  6. Duarte T.T., Spencer C.T. Personalized Proteomics: The Future of Precision Medicine // Proteomes. 2016; 4(4): 29.
  7. Bastos P., Trindade F., Ferreira R. L.-M. A., Falcão-Pires I., Ma-nadas B., Daniel-da-Silva A.L., Vitorino R. EDTA-functionalized magnetic nanoparticles: A suitable platform for the analysis of low abundance urinary proteins // Talanta. 2017; 170: 81–88.
  8. Blackburn K., Bustamante-Marin X., Yin W., Goshe M.B., Os-trowski L.E. Quantitative Proteomic Analysis of Human Airway Cilia Identifies Previously Uncharacterized Proteins of High Abun-dance // Journal of Proteome Research. 2017; 16(4): 1579–1592.
  9. Malm J., FehnigerT. E., Danmyr P., Végvári A., Welinder C., Lindberg H., Appelqvist R., Sjödin K., Wieslander E., Laurell T., Hober S., Berven F.S., Fenyö D., Wang X., Andrén P. E., Edula G., Carlsohn E., Fuentes M., Nilsson C. L., Dahlbäck M., Rezeli M., Erlinge D., Marko-Varga G. Developments in biobanking work-flow standardization providing sample integrity and stability// Jour-nal of Proteomics. 2013; 16(95): 38–45.
  10. Baker E.S., Liu T., Petyuk V.A. Burnum-Johnson K.E., Ibrahim Y.M. Mass spectrometry for translational proteomics: progress and clinical implications // Genome Medicine. 2012; 4: 63–74.
  11. Melania R.D., Skinner O.S., Fornelli L., Domont G.B., Compton P.D., Kelleher N.L. Mapping proteoforms and protein complexes from king cobra venom using both denaturing and native top-down proteomics // Molecular & Cellular Proteomics. 2016; 15(7): 2423–2434.
  12. Rabilloud T., Lescuyer P. Proteomics in mechanistic toxicology: history, concepts, achievements, caveats, and potential // Prote-omics. 2015; 15(5-6): 1051–1074.
  13. Tatham M.H., Cole C., Scullion P., Wilkie R., Westwood N.J., Stark L.A., Hay R.T. A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome // Mol. Cel. Proteomics. 2017; 16(2): 310–326.
  14. Jain K.K. Role of Proteomics in the Development of Personalized Medicine // Advances in Protein Chemistry and Structural Biology. 2016; 11(102): 41–52.
  15. Wang Z.Y., Kang H., Ji L.L., Yang Y.Q., Liu T.Y., Cao Z.W., Mo-rahan G., Wang Z.T. Proteomic characterization of the possible molecular targets of pyrrolizidine alkaloid isoline-induced hepato-toxicity // Environ. Toxicol. Pharmacol. 2012; 34: 608–617.
  16. Piechnik C.A., Höckner M., de Souza M.R., Donatti L., Tomanek L. Time course of lead induced proteomic changes in gill of the Ant-arctic limpet Nacella Concinna (Gastropoda: Patellidae) // Journal of Proteomics. 2017. 151: 145–161.
  17. Nielsen K.L., Telving R., Andreasen M.F., Hasselstrøm J.B., Jo-hannsen M.A. Metabolomics Study of Retrospective Forensic Data from Whole Blood Samples of Humans Exposed to 3,4-Methylenedioxymethamphetamine: A New Approach for Identify-ing Drug Metabolites and Changes in Metabolism Related to Drug Consumption // Journal of Proteome Research. 2016; 15(2): 619–627.
  18. Hood L.E., Omenn G.S., Moritz R.L., Aebersold R., Yamamoto K.R., Amos M., Hunter-Cevera J., Locascio L. New and improved proteomics technologies for understanding complex biological sys-tems: Addressing a grand challenge in the life sciences // Prote-omics. 2012; 12: 2773–2783.
  19. van Vliet E. Current Standing and Future Prospects for the Tech-nologies Proposed to Transform Toxicity Testing in the 21st Centu-ry // ALTEX. 2011; 28(1): 17–44.
  20. Black M.B., Budinsky R.A., Dombkowski A., Cukovic D., LeCluyse E.L, Ferguson S.S., Thomas R.S., Rowlands J.C. Cross-species comparisons of transcriptomic alterations in human and rat primary hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin // Toxi-cological Sciences. 2012; 127(1): 199–215.
  21. Sturla S.J., BoobisA. R., FitzGerald R.E., Hoeng J., Kavlock R.J., Schirmer K., Whelan M., Wilks M.F., Peitsch M.C. Systems toxi-cology: from basic research to risk assessment // Chemical Research in Toxicology. 2014: 27: 314–329.
  22. Anjo S. I., Santa C., Manadas B. SWATH-MS as a tool for bi-omarker discovery-from basic research to clinical applications // Proteomics. 2017: 17(3-4): 1600278.
  23. van den Broek I., Blokland M., Nessen M. A., Sterk S. Current trends in mass spectrometry of peptides and proteins: Application to veterinary and sports‐doping control // Mass Spectrom. Rev. 2015; 34: 571–594.