COMPUTER SIMULATION AS A TOOL TO STUDY LIGAND POTENTIAL OF LACTATE

DOI: https://doi.org/10.29296/25877313-2020-04-02
Issue: 
4
Year: 
2020

V.I. Kuzmicheva Post-graduate Student, Department of Fundamental and Clinical Biochemistry with Laboratory Diagnostics, Samara State Medical University E-mail: bio-sam@yandex.ru F.N. Gilmiyarova Honored Scientist of the Russian Federation, Dr.Sc. (Med.), Professor, Department of Fundamental and Clinical Biochemistry with Laboratory Diagnostics, Samara State Medical University E.V. Avdeeva Dr.Sc. (Pharm.), Professor, Department of Pharmacognosy with Botany and Fundamentals of Phytotherapy, Samara State Medical University

The study of the protein-small molecule interaction of the is an actual direction of modern fundamental science. The expansion of knowledge in this area is largely due to the emergence of possibilities for modeling the biological activity of compounds in silico. The aim of the study is to identify potential protein partners for lactate interaction using the computer software STITCH 5.0. Methods. The STITCH program (http://stitch.embl.de/) was used to predict the protein partners of the lactate. This program builds a prognosis for possible interaction with proteins based on a mathematical algorithm calculated on the inhibition constant, as well as using information available in open libraries of chemical structures. Contains 430 000 chemical compounds, 9 600 000 proteins, 2031 model organism. We chose to graphically dis-play the obtained results depending on the affinity of the bond, with the degree of probability of Pa>0.5. Results. A total of 367 potential lactate protein partners were identified. The possibility of intermediate interaction with mitochondrial pyruvate carrier, aquaporines, influence on hormonal signal and nerve impulse transmission, and have a neuroprotective effect was predicted. Conclusion. The data obtained indicate an extensive nonmetabolic role of lactate in the regulation of various biological processes, which determines new approaches to the formation of experimental models to confirm the predicted effects.

Keywords: 
lactate
in silico
STITCH
computer simulation
protein-metabolite interaction

References: 
  1. Kim E.S. The Future of Molecular Medicine: Biomarkers, BATTLEs, and Big Data. Am. Soc. Clin. Oncol. Educ. Book. 2015:2227. doi:10.14694/EdBookAM.2015.35.22.
  2. Kuhn M., von Mering C., Campillos M., Jensen L.J., Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic. Acids Res. 2008;36 (Database issue):D684–D688. doi:10.1093/nar/gkm795.
  3. Kuhn M., Szklarczyk D., Pletscher-Frankild S., von Mering C., Jensen L.J., Bork P. STITCH 4: integration of protein-chemical interactions with user data. Nuceic Acids Res. 2014; 42(Database issue):D401–D407. doi:10.1093/nar/gkt1207.
  4. Brooks G.A. The Science and Translation of Lactate Shuttle Theory. Cell Metab. 2018; 27(4):757785. doi: 10.1016/j.cmet.2018.03.008.
  5. Taher M., Leen W.G., Wevers R.A., Willemsen M.A. Lactate and its many faces. Eur. J. Paediatr. Neurol. 2016; 20(1):310. doi: 10.1016/j.ejpn.2015.09.008. Epub. 2015. Oct. 9.
  6. Rawat D., Chhonker S.K., Naik R.A., Mehrotra A., Trigun S.K., Koiri R.K. Lactate as a signaling molecule: Journey from dead end product of glycolysis to tumor survival. Front Biosci (Landmark Ed). 2019; 24:366381.
  7. Szklarczyk D., Santos A., von Mering C., Jensen L.J., Bork P., Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic. Acids. Res. 2016; 44(D1):D380–D384. doi:10.1093/nar/gkv1277.
  8. Gilmiyurova F.N., Koloteva N.A., Ryuskina E.A., Radomskaya V.M., Gusyakova O.A., Potekhina V.I., Gorbacheva I.V. Strukturno-regulyatornyui potentsial laktata. Sovremennyue problemyu nauki i obrazovaniya. 2016; 2:110.
  9. Poroikov V.V., Filimonov D.A., Gloriozova T.A., Lagunin A.A., Druzhilovskii D.S., Stepanchikova A.V. Kompyuternoe predskazanie biologicheskoi aktivnosti khimicheskikh veshchestv: virtualnaya khemogenomika. Informatsionnyui vestnik VOGiS. 2009; 13(1):137143.
  10. Gilmiyurova F.N., Koloteva N.A., Potekhina V.I., Baisheva G.M., Ryuskina E.A. Rol laktata v mezhmolekulyurnoi regulyutsii vzaimodeistviya belkovyukh struktur. Meditsinskii almanakh. 2017; (2):99101. https://doi.org/10.21145/2499-9954-2017-2-99-101.
  11. Tang F., Lane S., Korsak A., Paton J., Gourine A., Kasparov S., Teschemacher A.G. Lactate-mediated glia-neuronal signaling in the mammalian brain. Nature Commun. 2014; 5:3284 DOI:10.1038/ncomms4284.
  12. Di Liegro C.M., Schiera G., Proia P., Di Liegro I. Physical Activity and Brain Health. Genes (Basel). 2019; 10(9):720. doi:10.3390/genes10090720.