NEUROPEPTIDES IN THE REGULATION OF BRAIN ACTIVITY IN NORMAL AND NEURODEGENERATION

DOI: https://doi.org/10.29296/25877313-2020-08-01
Issue: 
8
Year: 
2020

E.A. Teplyashina Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation (Krasnoyarsk) E-mail: elenateplyashina@mail.ru R.Ya. Olovyannikova Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation (Krasnoyarsk) E-mail: Olovyannikova2010@yandex.ru E.V. Kharitonova Ph.D. (Pharm.), Senior Lecturer, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation (Krasnoyarsk) E-mail: ekaterinav1201@gmail.com O.L. Lopatina Dr.Sc. (Biol.), Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation (Krasnoyarsk) E-mail: ol.lopatina@gmail.com V.A. Kutyakov Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation (Krasnoyarsk) E-mail: victor-koutjakov@yandex.ru S.I. Pashchenko Assistant, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation (Krasnoyarsk) E-mail: psi51@mail.ru E.A. Pozhilenkova Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation (Krasnoyarsk) E-mail: elena.a.pozhilenkova@gmail.com A.B. Salmina Dr.Sc. (Med.), Professor, Head of the Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation (Krasnoyarsk) E-mail: allasalmina@mail.ru

An analysis of the literature containing information on the participation of neuropeptides in the development of brain diseases was carried out. Changes in the production, processing and secretion of neuropeptides, the activity of signaling mechanisms with their participation are responsible for the for-mation of different variants of neurological deficits (cognitive, behavioral, etc.). As a rule, neuropeptides or otherwise biologically active molecules in the body can function as neurotransmitters, neuromodulators, or neurohormones that perform cognitive and behavioral functions. These biologically active molecules are localized in cells in secretory vesicles, which are delivered from the body of nerve cells to nerve endings and act through Gp-conjugated receptors. The action of neuropeptides has been significantly studied rela-tive to pathological conditions of the brain. So, the mechanism of development of Alzheimer's disease is associated with a diverse spectrum of neuro-peptides such as ghrelin, neurotensin, pituitary activating adenylates cyclase polypeptide, neuropeptide Y, neuropeptide P, orexin. This disease is char-acterized by the accumulation of amyloid β (represented by two forms - Aβ1-42, Aβ1-40) in the brain tissue, which is due to an imbalance in the activi-ty of secretases. The target of action is the precursor protein (APP). The form of the Aβ1-42 peptide has a destructive effect on the cell, this is due to a multidirectional effect: damage to mitochondria, an increase in the sensitivity of neurons to the effects of glutamate, impaired calcium metabolism, and a slowdown in metabolic transformations of glucose. Aβ peptide is characterized by the performance of a key function in synaptic transmission of a nerve impulse and enhanced synaptic transmission be-tween two neurons for a long time. The pathological picture of Alzheimer's disease is characterized by significant expression of apolipoprotein E (APOE) in the brain tissue, which forms local cell clusters of amyloid β with Aβ, a decrease in the number of neurons expressing proopiomelanocortin (POMC), neuropeptide Y (NPY) and agouti-like peptide (AgRP) genes that change brain activity. As a result, expression of genes responsible for the synthesis of proteins of the immune system, early development of neuroinflammation and activation of apoptosis is also noted. Thus, neuropeptides are considered not only as biomarkers of pathological conditions, but also as targets for pharmacological preparations.

Keywords: 
neuropeptides
neurodegeneration
biomarkers
Alzheimer's disease

References: 
  1. Hook V., Lietz C., Podvin S., Cajka T., Fiehn O. Diversity of Neuropeptide Cell-Cell Signaling Molecules Generated by Proteolytic Processing Revealed by Neuropeptidomics Mass Spectrometry. J Am Soc Mass Spectrom. 2018; 29(5): 807–816.
  2. Bakos J., Zatkova M., Bacova Z., Ostatnikova D. The Role of Hypothalamic Neuropeptides in Neurogenesis and Neuritogenesis. Neural Plast. 2016; 13.
  3. Van Dam D., Van Dijck A., Janssen L., De Deyn P.P. Neuropeptides in Alzheimer's disease: from pathophysiological mechanisms to therapeutic opportunities. Curr Alzheimer Res. 2013; 10(5): 449–68.
  4. Chen X.Y, Du Y.F, Chen L. Neuropeptides Exert Neuroprotective Effects in Alzheimer's Disease. Front. Mol. Neurosci. 2019; 11: 493.
  5. Gorina Ja.V., Komleva Ju.K., Lopatina O.L., Chernyh A.I., Salmina A.B. Vlijanie insulinorezistentnosti na narushenie metabolizma gljukozy v mindaline golovnogo mozga pri eksperimental'noj bolezni Al'tsgejmera. Bjulleten' sibirskoj meditsiny. 2017; 16(4): 106–115 (Gorina Ja.V., Komleva Ju.K., Lopatina O.L., Chernyh A.I., Salmina A.B. Vlijanie insulinorezistentnosti na narushenie metabolizma gljukozy v mindaline golovnogo mozga pri jeksperimental'noj bolezni Al'cgejmera. Bjulleten' sibirskoj mediciny. 2017; 16(4): 106–115).
  6. Komleva Ju.K., Gorina Ja.V., Chernyh A.I., Lopatina O.L., Shabalova A.A., Trufanova L.V., Olovjannikova R.Ja., Endrzheevskaja-Shurygina V.Ju., Salmina A.B. Osobennosti proliferatsii i migratsii kletok golovnogo mozga pri kognitivnom treninge zhivotnyh s eksperimental'noj bolezn'ju Al'tsgejmera. Bjulleten' sibirskoj meditsiny. 2016; 6: 1–5 (Komleva Ju.K., Gorina Ja.V., Chernyh A.I.,
  7. Lopatina O.L., Shabalova A.A., Trufanova L.V., Olovjannikova R.Ja., Endrzheevskaja-Shurygina V.Ju., Salmina A.B. Osobennosti proliferacii i migracii kletok golovnogo mozga pri kognitivnom treninge zhivotnyh s jeksperimental'noj bolezn'ju Al'cgejmera. Bjulleten' sibirskoj mediciny. 2016; 6: 1–5).
  8. Do K., Laing B.T., Landry T., Bunner W., Mersaud N., Matsubara T., Li P., Yuan Y., Lu Q., Huang H. The effects of exercise on hypothalamic neurodegeneration of Alzheimer’s disease mouse model. J. Am. Soc. Mass Spectrom; 2018; 13(1).
  9. Popelová A., Kákonová A., Hrubá L., Kuneš J., Maletínská L., Železná B. Potential neuroprotective and anti-apoptotic properties of a long-lasting stable analog of ghrelin: an in vitro study using SH-SY5Y cells. Physiol. Res. 2018; 67: 339–346.
  10. Hu K., Harper D.G., Shea S.A., Stopa E.G., Scheer F.A. Noninvasive fractal biomarker of clock neurotransmitter disturbance in humans with dementia. Sci. Rep. 2013; 3: 2229.
  11. Xiao Z., Cilz N.I., Kurada L., Hu B., Yang C., Wada E., Combs C.K., Porter J.E., Lesage F., Lei S. Activation of neurotensin receptor 1 facilitates neuronal excitability and spatial learning and memory in the entorhinal cortex: beneficial actions in an Alzheimer's disease model. J. Neurosci. 2014; 34: 7027–7042.
  12. An H., Cho M.H., Kim D.H., Chung S., Yoon S.Y. Orexin impairs the phagocytosis and degradation of amyloid-β fibrils by microglial cells. J. Alzheimers Dis. 2017; 253–261.
  13. Lee D.Y., Hong S.H., Kim B., Lee D.S., Yu K., Lee K.S. Neuropeptide Y mitigates ER stress-induced neuronal cell death by activating the PI3K-XBP1 pathway. Eur. J. Cell Biol. 2018; 97: 339–348.
  14. Johansson P., Almqvist E.G., Wallin A., Johansson J.O., Andreasson U., Blennow K., Zetterberg H., Svensson J. Cerebrospinal fluid substance P concentrations are elevated in patients with Alzheimer's disease. Neurosci. Lett. 2015; 609: 58–62.
  15. Gabelle A., Jaussent I., Hirtz C., Vialaret J., Navucet S., Grasselli C., Robert P., Lehmann S., Dauvilliers Y. Cerebrospinal fluid levels of orexin-A and histamine, and sleep profile within the Alzheimer process. Neurobiol. Aging. 2017; 53: 59–66.
  16. Gallone S., Boschi S., Rubino E., De Martino P., Scarpini E., Galimberti, D., Fenoglio C., Acutis P.L., Maniaci M.G, Pinessi L., Rainero I. Is HCRTR2 a genetic risk factor for Alzheimer's disease? Dement. Geriatr. Cogn. Disord. 2014; 38: 245–253.
  17. Balmus I.M., Ciobica A., Stoica B., Lefter R., Cojocari S., Reznikov A.G. Effects of Oxytocin Administration on Oxidative Markers in the Temporal Lobe of Aged Rats. Neurophysiology. 2019; 51: 18–24.
  18. Elabd C., Cousin W., Upadhyayula P., Chen R.Y., Chooljian M.S., Li J., Kung S., Jiang K.P., Conboy I.M. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat. Commun. 2014; 10 (5): 4082.
  19. Jesso S., Ross S., Pell M.D., Pastermak S.H., Mitchell D.G., Kertesz A., Finger E.C. The effects of oxytocin on social cognition and behaviour in frontotemporal dementia. Brain. 2011; 134(9): 2493–501.
  20. Finger E.C., MacKinley J., Blair M., Oliver L.D., Jesso S., Tartaglia M.C., Borrie M., Wells J., Dziobek I., Pasternak S., Mitchell D.G.V., Rankin K., Kertesz A., Boxer A. Oxytocin for frontotemporal dementia. Neurology. 2015; 84(2): 174–181.
  21. Tampi R.R., Maksimowski M., Ahmed D., Tampi M.J. Oxytocin for frontotemporal dementia: a systematic review. Ther. Adv. Psychopharmacol. 2017; 7(1): 48–53.