THEORETICAL AND TECHNOLOGICAL FOUNDATIONS OF NEUROPEPTIDOMICS (REVIEW)

DOI: https://doi.org/10.29296/25877313-2020-10-01
Issue: 
10
Year: 
2020

E.A. Teplyashina Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky (Krasnoyarsk) E-mail: elenateplyashina@mail.ru R.Ya. Olovyannikova Ph.D. (Biol.) E.V. Kharitonova Ph.D. (Pharm.), Senior Lecturer, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky (Krasnoyarsk) E-mail: ekaterinav1201@gmail.com Lopatina O.L. Dr.Sc. (Biol.), Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky (Krasnoyarsk) Email: ol.lopatina@gmail.com V.A. Kutyakov Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky (Krasnoyarsk) E-mail: victor-koutjakov@yandex.ru S.I. Pashchenko Assistant, Department of Biological Chemistry with a course in medical, pharmaceutical and toxicological chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky (Krasnoyarsk) E-mail: psi51@mail.ru E.A. Pozhilenkova Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky (Krasnoyarsk) Email: elena.a.pozhilenkova@gmail.com A.B. Salmina Dr.Sc. (Med.), Professor, Head of the Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky (Krasnoyarsk) E-mail: allasalmina@mail.ru

Adaptation of the human body to the changing factors of the internal and external environment is impossible without the normal regulation of the activi-ty of organs and systems. Neuropeptides - biologically active compounds, the synthesis of which occurs mainly in the cells of the central nervous system, play a decisive role in the mechanisms of memory, learning, sleep, regulate metabolic processes, maintain homeostasis. These compounds are used as drugs - neuroprotective agents for neurodegeneration. The analysis of domestic and foreign literature containing information on the current state and development prospects of neuropeptidomics, focused on the study of the spectrum of brain peptides in normal and pathological conditions. Neuropeptides are regulators of the functional activity of central nervous system cells in normal and pathological conditions, actively participating in the pathogenesis of developmental disorders, ischemic and trau-matic brain damage, and chronic neurodegeneration. The authors consider the possibility of using modifications of various analytical methods (chro-matographic, mass spectrometric and chromato-mass spectrometric) and their combinations in biomedical research and in the search for bi-omarkers. Peptidomics provides information on low-mass proteins and products of proteolytic degradation of proteins. Neuropeptides have selective permeability through the blood-brain barrier, therefore, a complex of peptides can serve as an indicator of pathological processes and can be used as markers of the early stages of the disease or mediators of pathological processes. Of the many sensitive and specific methods for studying neuropeptides, mass spectrometry is becoming the leading technology in pepti-domics. This platform is ideal for analysis of drug metabolism, therapeutic monitoring of drugs, proteomics, metabolomics, analysis of environmental objects, food products, toxicology and clini-cal applications. Thus, one of the most important applied goals of neuropeptidomics is the laboratory diagnosis of new biomarkers with ultra-sensitivity, high specificity and prognostic value for creating new diagnostic algorithms and for assessing the risk of developing a disease in the context of preventive personalized medicine

Keywords: 
proteomics
peptidomics
neuropeptides
neurodegeneration

References: 
  1. Kutjakov V.A., Haritonova E.V., Olovjannikova R.Ja., Salmina A.B. Sovremennoe sostojanie i perspektivy primenenija metodov proteomiki v himiko-toksikologicheskom analize (obzor). Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. 2019; 22(9): 47–52.
  2. Govorun V.M., Ivanov V.T. Proteomika i peptidomika v fundamental'nyh i prikladnyh medicinskih issledovanijah. Bioorganicheskaja himija. 2011; 37(2): 199–215.
  3. Li L., Sweedler J.V. Peptides in the brain: mass spectrometry-based measurement approaches and challenges. Annu. Rev. Anal. Chem. 2008; 1: 451–483.
  4. Nylander I., Stenfors C., Tan-No K., Mathe A.A., Terenius L.A. Comparison between microwave irradiation and decapitation: basal levels of dynorphin and enkephalin and the effect of chronic morphine treatment on dynorphin peptides. Neuropeptides. 1997; 31: 357–365.
  5. Che F.Y., Lim J., Pan H., Biswas R., Fricker L.D. Quantitative neuropeptidomics of microwave-irradiated mouse brain and pituitary. Mol. Cell Proteomics. 2005; 4: 1391–1405.
  6. Che F.Y., Fricker L.D. Quantitative peptidomics of mouse pituitary: comparison of 32. different stable isotopic tags. J. Mass. Spectrom. 2005; 40: 238–249.
  7. Svensson M., Boren M., Sköld K., Fälth M., Sjögren B., Andersson M., Svenningsson P., Andren P.E. Heat stabilization of the tissue proteome: a new technology for improved proteomics. J. Proteome. Res. 2009; 8: 974–981.
  8. Chugunov A.O. Neizvestnye peptidy: «tenevaja» sistema bioreguljacii. Nauka i zhizn'. 2010; 26–31.
  9. Schrader M., Fricker L. Peptidomics: Methods and Stra¬tegies. Methods in Molecular Biology. 1-st ed. Springer, Berlin. 2018. 423 p.
  10. DeLaney K., Buchberger A.R., Atkinson L., Gründer S., Mousley A., Li L. New techniques, applications and perspectives in neuropeptide research. Journal of Experimental Biology. 2018. 221 p.
  11. Muth T., Keller D., Puetz S.M., Martens L., Sickmann A., Boehm A.M. jTraqX: a Free, Platform Independent Tool for Isobaric Tag Quantitation at the Protein Level. Proteomics. 2010; 10(6): 1223–1225.
  12. Dallas D.C., Guerrero A., Parker E.A., Robinson R.C., Gan J., German J.B., Barile D., Lebrilla C.B. Current peptidomics: Applications, purification, identification, quantification, and functional analysis. Proteomics. 2015; 15(0): 1026–1038.
  13. Hook V., Lietz C., Podvin S., Cajka T., Fiehn O. Diversity of Neuropeptide Cell-Cell Signaling Molecules Generated by Pro¬teolytic Processing Revealed by Neuropeptidomics Mass Spect¬rometry. J. Am. Soc. Mass. Spectrom. 2018; 29(5): 807–816.
  14. Yin P., Hou X., Romanova E.V., Sweedler J.V. Neuropeptidomics: Mass Spectrometry-Based Qualitative and Quantitative Analysis. Methods in Molecular Biology. 2011; 789: 223–236.
  15. Chechetkin V.R., Prokopenko D.V., Makarov A.A., Zasedatelev A.S. Biochipy dlja medicinskoj diagnostiki. Rossijskie nanotehnologii. 2006; 1(1-2): 13–18.
  16. Terent'ev A.A., Moldogazieva N.T., Shajtan K.V. Dinamicheskaja proteomika v modelirovanii zhivoj kletki. Belok-belkovye vzaimodejstvija. Uspehi biologicheskoj himii. 2009; 49: 429–480.
  17. Secher A., Kelstrup C.D., Conde-Frieboes K.W., Pyke C., Raun K., Wulff B.S., Olsen J.V. Analytic framework for peptidomics applied to large-scale neuropeptide identification. Nat. Commun. 2016; 7: 11436.
  18. Romanova E.V., Sweedler J.V. Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends in Pharmacological Sciences. 2015; 36(9): 579–585.
  19. Goodlett D.R., Keller A., Watts J.D., Keller A., Newitt R. Differential stable isotope labeling of peptides for quantitation and de novo se-quence derivation Rapid Commun. Mass Spectrom. 2001; 15: 1214–1221.
  20. Kinter M., Sherman N.E. Protein sequencing and identification using tandem mass spectrometry. John Wiley & Sons, Inc. New York. 2000