INCLUSION OF RADACHLORIN PHOTOSENSITIZER INTO POLYMERIC MICROPARTICLES AS A PROMISING APPROACH TO IMPROVE ITS EFFICIENCY IN PHOTODYNAMIC THERAPY

DOI: https://doi.org/10.29296/25877313-2021-02-02
Issue: 
2
Year: 
2021

A.M. Miroshkina Post-graduate Student, I.M. Sechenov First Moscow State Medical University (Moscow, Russia) E-mail: asyamir@mail.ru S.P. Krechetov Ph.D. (Med.), Moscow Institute of Physics and Technology (State University) (Moscow region, Dolgoprudny, Russia) N.L. Solovyeva Ph.D. (Pharm.), Associate Professor, I.M. Sechenov First Moscow State Medical University (Moscow, Russia) I.I. Krasnyuk Dr.Sc. (Pharm.), Professor, I.M. Sechenov First Moscow State Medical University (Moscow, Russia)

The widespread use of photodynamic therapy as a method for treating oncological diseases is associated with its high efficiency and fewer side ef-fects. The development of methods for the inclusion of photosensitizers into polymeric microparticles as delivery systems makes it possible to in-crease the accumulation of such particles by tumor cells and to reduce the manifestation of systemic undesirable effects. Based on a biocompatible copolymer poly(lactic-co-glycolic acid) microparticles with the inclusion of the photosensitizer radachlorin, perfluorodecalin, and magnetic nanoparticles were obtained by the double emulsion method. It is shown that exposure of the obtained microparticles to light radiation used in photodynamic therapy is accompanied by the formation of singlet oxygen, intensified by the presence of perfluorodecalin and magnetic nanoparticles in the polymer matrix. The research results make it possible to consider the obtained microparticles as a depot of radachlorin for local use in photodynamic therapy of tu-mors.

Keywords: 
microparticles
radachlorin
perfluorodecalin
magnetic nanoparticles
photodynamic therapy

References: 
  1. Filonenko E.V, Serova L.G. Fotodinamicheskaja terapija v klinicheskoj praktike. Biomedical Photonics. 2016; 5(2): 26–37.
  2. Gamajunov S.V., Shahova N.M., Denisenko A.N. i dr. Fotodinamicheskaja terapija  preimushhestva novoj metodiki i osobennosti organizacii sluzhby. TMZh. 2014; 2: 56.
  3. Allison R.R., Downie G.H, Cuenca R., et al. Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy. 2004; 27: 42.
  4. Zhou L., Wang H., Li Y. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics. 2018; 8(4): 1059–1074.
  5. Kalyane D., Raval N., Maheshwari R., Tambe V., Kalia K., Tekade R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. 2019; 98: 1252–1276.
  6. Chan Thi Haj Ien, Ramenskaja G.V., Oborotova N.A. Fotosensibilizatory hlorinovogo rjada v FDT opuholej. Rossijskij bioterapevticheskij zhurnal. 2009; 8(4): 95–104.
  7. Privalov V.A., Lappa A.V., Kochneva E.V. Five years’ experience of photodynamic therapy with new chlorin photosensitizer. Proc. SPIE. 2005; 5863: 186–198.
  8. Vargas F., Díaz Y., Yartsev V., Marcano A., Lappa A. Photophysical properties of novel PDT photosensitizer Radachlorin in different media.Ciencia. 2004;12:70–77.
  9. Douillard S., Olivier D., Patrice T. In vitro and in vivo evaluation of Radachlorin® sensitizer for photodynamic therapy. Photochem. Photobiol. Sci. 2009; 8: 405–413.
  10. Reshetnikov A.V. Fotosensibilizatory v sovremennoj klinicheskoj praktike (obzor). Materialy nauchno-prak¬ticheskoj konferencii otorinolaringologov CFO RF «Lazernye tehnologii v otorinolaringologii» / Pod red. V.G. Zengera i A.N. Nasedkina. Tula. 2007.
  11. Temnov A.A., Sklifas A.N., Kukushkin N.I. i dr. Vlijanie tribloksopolimerov polioksijetilena-polioksipropi¬lena na stepen' zagruzki v mezenhimal'nye stvolovye kletki mikrochastic na osnove sopolimerov molochnoj i glikolevoj kislot, soderzhashhih hlorin e{6} i bromistyj jetidij. Biofizika. 2019; 64(2): 307–315.
  12. Lei Shi, Xiuli Wang, Feng Zhao, et al. In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles. International Journal of Nanomedicine. 2013: 2669–2776.
  13. Miyoshi N., Tomita G. Production and reaction of singlet oxygen in aqueous micellar solutions using pyrene as photosensitizer. Zeitschriftfür Naturforschung B. 1978; 33(6): 622–627.
  14. Sahai D., Lo J.L., Hagen I.K., Bergstrom L.et al. Metabolically convertible lipophilic derivatives of pH-sensitive amphipathic photosensitizers. Photochem. Photobiol. 1993. 58(6): 803–808.
  15. Vermathen M., Marzorati M., Vermathen P., Bigler P. pH-dependent distribution of chlorin e6 derivatives across phospholipid bilayers probed by NMR spectroscopy. Langmuir 2010; 26(13): 11085–11094.
  16. Zheng Wang, Fan Zhang, Dan Shao, et al. Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Anti-Metastatic Immunotherapy. Adv. Sci. 2019; 1901690: 1–10.