FEATURES OF METABOLISM AND SPECTRUM OF ACTION OF SELENIUM, POSSIBILITIES OF APPLICATION OF SELENE-CONTAINING FOOD SUPPLEMENTS UNDER SARS-COV-2 PANDEMIC CONDITIONS

DOI: https://doi.org/10.29296/25877313-2022-03-04
Issue: 
3
Year: 
2022

E.V. Okladnikova Ph.D. (Med.), Associate Professor of the Department of Pharmacology and Сlinical Рharmacology with a Postgraduate Course, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky of the Ministry of Health of the Russian Federation (Krasnoyarsk, Russia) T.V. Potupchik Ph.D. (Med.), Associate Professor of the Department of Pharmacology and Сlinical Рharmacology with a Postgraduate Course, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky of the Ministry of Health of the Russian Federation (Krasnoyarsk, Russia) E-mail: potupchik_tatyana@mail.ru L.S. Evert Dr.Sc. (Med.), Chief Researcher, the Clinical Department of Somatic and Mental Health of Children, Federal Research Center "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North – a Separate Division (Krasnoyarsk, Russia); Professor, the Department of General Professional Disciplines, Medical, Psychological and Social Institute, N.F. Katanov Khakass State University named after (Abakan, Republic of Khakassia, Russia) O.F. Veselova Ph.D. (Med.), Head of the Department of Pharmacology and Сlinical Рharmacology with a Postgraduate Course, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky of the Ministry of Health of the Russian Federation (Krasnoyarsk, Russia) Ya.E. Shirobokov Post-graduate Student, Department of Management and Economics of Pharmacy, Samara State Medical University (Samara, Russia)

This article provides a literary review of domestic and foreign sources reflecting the prevalence of selenium (Se) in the environment, its metabolism in the human body. It has been shown that Se deficiency is associated with cardiovascular diseases, disorders in the endocrine and reproductive sys-tem. The role of Se in the antioxidant defense system that supports the redox homeostasis of the cell and the body, for example, in viral infections, one of the causes of which is oxidative stress, is presented. The above sources also reflect the positive role of Se in viral infections, including, with a new coronavirus infection caused by the SARS-CoV-2 virus, since Se is necessary for the differentiation and proliferation of a number of immune cells involved in the processes of innate and adaptive immunity. It has been proven that in moderate doses, the Se supplement increases the proliferation of T cells and the activity of natural killer cells. In this regard, it is possible to recommend taking dietary supplements containing Se in high-risk areas and /or shortly after suspected infection with SARS-CoV-2. Positive research results, as well as a good safety profile, indicate the possibility of using bio-logically active food additives containing Se in complex therapy, in particular SELENBIO for women in disorders of the cardiovascular, endocrine, repro-ductive system, as well as in infectious diseases

Keywords: 
selenium
metabolism
viral infections
COVID-19
SELENBIO for women

References: 
  1. Varlamova E.G. Mikrojelement selen: unikal'nye svojstva, vstrechaemost' v prirode, kljuchevye funkcii selen-soderzhashhih soedinenij, rol' v zdorov'e: Monografija. M.: Rusajns, 2018.
  2. Weng L., Vega F.A., Supriatin S., Bussink W., Van Riemsdijk W.H. Speciation of Se and DOC in soil solution and their relation to Se bioavailability. Environ. Sci. Technol. 2011; 45: 262–267. DOI:10.1021/es1016119.
  3. Winkel L.H., Vriens B., Jones G.D., Schneider L.S., Pilon-Smits E., Bañuelos G.S. Selenium cycling across soil-plant-atmosphere interfaces: A critical review. Nutrients. 2015; 7: 4199–4239. DOI:10.3390/nu7064199.
  4. Raina M., Sharma A., Nazir M., Kumari P., Rustagi A., Hami A., Bhau B.S., Zargar S.M., Kumar D. Exploring the new di-mensions of selenium research to understand the underlying mechanism of its uptake, translocation, and accumulation. Physiol Plant. 2021; 171(4): 882-895. doi:10.1111/ppl.13275.
  5. Mehdi Y., Hornick J.L., Istasse L., Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules. 2013; 18: 3292–3311. doi:10.3390/molecules18033292.
  6. Terry N., Zayed A.M., De Souza M.P., Tarun A.S. SELENIUM IN HIGHER PLANTS. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 2000; 51: 401432. DOI: 10.1146/annurev.arplant.51.1.401.
  7. Filippini T., Michalke B., Wise L.A., Malagoli C., Malavolti M., Vescovi L., Salvia C., Bargellini A., Sieri S., Krogh V., Ferrante M., Vinceti M. Diet composition and serum levels of selenium species: A cross-sectional study. Food Chem Toxicol. 2018; 115: 482490. DOI:10.1016/j.fct.2018.03.048.
  8. Fairweather-Tait S.J., Bao Y., Broadley M.R., Collings R., Ford D., Hesketh J.E., Hurst R. Selenium in human health and disease. Antioxid Redox Signal. 2011; 14(7): 13371383. DOI:10.1089/ars.2010.3275. Epub 2011 Jan 6. PMID: 20812787.
  9. Rayman M.P., Infante H.G., Sargent M. Food-chain selenium and human health: Spotlight on speciation. Br. J. Nutr. 2008 Aug; 100(2): 238253. DOI: 10.1017/S0007114508922522.
  10. Plateau P., Saveanu C., Lestini R., Dauplais M., Decourty L., Jacquier A., Blanquet S., Lazard M. Exposure to selenomethionine causes selenocysteine misincorporation and protein aggregation in Saccharomyces cerevisiae. Sci. Rep. 2017; 7: 44761. DOI:10.1038/srep44761.
  11. Fairweather-Tait S.J., Bao Y., Broadley M.R., Collings R., Ford D., Hesketh J.E., Hurst R. Selenium in human health and disease. Antioxid Redox Signal. 2011; 14(7): 13371383. doi:10.1089/ars.2010.3275.
  12. Huang W., Akesson B., Svensson B.G., Schütz A., Burk R.F., Skerfving S. Selenoprotein P and glutathione peroxidase (EC 1.11.1.9) in plasma as indices of selenium status in relation to the intake of fish. Br. J. Nutr. 1995; 73(3): 455461. DOI:10.1079/bjn19950047.
  13. Bulteau A.L., Chavatte L. Update on selenoprotein biosynthesis. Antioxid Redox Signal. 2015; 23(10): 775794. DOI: 10.1089/ars.2015.6391.
  14. Carlson B.A., Lee B.J., Tsuji P.A., Tobe R., Park J.M., Schweizer U., Gladyshev V.N., Hatfield D.L. Selenocystein et RNA [Ser]Sec: From Nonsense Suppressor tRNA to the Quintessential Constituent in Selenoprotein Biosynthesis. In: Hatfield D.L., Tsuji P.A., Gladyshev V.N., editors. Selenium: Its Molecular Biology and Role in Human Health. 4th ed. Springer Science+Business Media, LLC; New York, NY, USA, 2016.
  15. Hill K.E., Zhou J., McMahan W.J., Motley A.K., Atkins J.F., Gesteland R.F., Burk R.F. Deletion of selenoprotein P alters distribution of selenium in the mouse. J. Biol. Chem. 2003; 278(16): 1364013646. DOI: 10.1074/jbc.M300755200.
  16. Raman A.V., Pitts M.W., Seyedali A., Hashimoto A.C., Seale L.A., Bellinger F.P., Berry M.J. Absence of selenoprotein P but not selenocysteine lyase results in severe neurological dysfunction. Genes. Brain. Behav. 2012; 11(5): 601613. DOI: 10.1111/j.1601-183X.2012.00794.x.
  17. Cui S., Men L., Li Y., Zhong Y., Yu S., Li F., Du J. Selenoprotein S Attenuates Tumor Necrosis Factor-alpha-Induced Dysfunction in Endothelial Cells. Mediat. Inflamm. 2018; 2018: 1625414. DOI: 10.1155/2018/1625414.
  18. Ye Y., Fu F., Li X., Yang J., Liu H. Selenoprotein S Is Highly Expressed in the Blood Vessels and Prevents Vascular Smooth Muscle Cells From Apoptosis. J. Cell Biochem. 2016; 117(1): 106117. DOI: 10.1002/jcb.25254.
  19. Zhang Y., Roh Y.J., Han S.J., Park I., Lee H.M., Ok Y.S., Lee B.C., Lee S.R. Role of Selenoproteins in Redox Regulation of Signaling and the Antioxidant System: A Review. Antioxidants (Basel). 2020; 9(5): 383. DOI: 10.3390/antiox9050383.
  20. Marciel M.P., Hoffmann P.R. Molecular Mechanisms by Which Selenoprotein K Regulates Immunity and Cancer. Biol. Trace Elem. Res. 2019; 192 (1): 6068. DOI: 10.1007/s12011-019-01774-8).
  21. Lee J.H., Park K.J., Jang J.K., Jeon Y.H., Ko K.Y., Kwon J.H., Lee S.R., Kim I.Y. Selenoprotein S-dependent Selenoprotein K Binding to p97(VCP) Protein Is Essential for Endoplasmic Reticulum-associated Degradation. J. Biol. Chem. 2015; 290(50): 2994129952. DOI: 10.1074/jbc.M115.680215
  22. Pothion H., Jehan C., Tostivint H., Cartier D., Bucharles C., Falluel-Morel A., Boukhzar L., Anouar Y., Lihrmann I. Selenoprotein T: An Essential Oxidoreductase Serving as a Guardian of Endoplasmic Reticulum Homeostasis. Antioxid Redox Signal. 2020; 33(17): 12571275. DOI: 10.1089/ars.2019.7931.
  23. Rocca C., Pasqua T., Boukhzar L., Anouar Y., Angelone T. Progress in the emerging role of selenoproteins in cardiovascular disease: Focus on endoplasmic reticulum-resident selenoproteins. Cell Mol. Life Sci. 2019; 76(20): 39693985. DOI: 10.1007/s00018-019-03195-1.
  24. Merk D., Ptok J., Jakobs P, von Ameln F., Greulich J., Kluge P., Semperowitsch K., Eckermann O., Schaal H., Ale-Agha N., Altschmied J., Haendeler J. Selenoprotein T Protects Endothelial Cells against Lipopolysaccharide-Induced Activation and Apoptosis. Antioxidants (Basel). 2021; 10(9): 1427. DOI: 10.3390/antiox10091427.
  25. Ma C., Martinez-Rodriguez V., Hoffmann P.R. Roles for Selenoprotein I and Ethanolamine Phospholipid Synthesis in T Cell Activation. Int J Mol Sci. 2021; 22(20): 11174. DOI: 10.3390/ijms222011174.
  26. Kim H., Lee K., Kim J.M., Kim M.Y., Kim J.R., Lee H.W., Chung Y.W., Shin H.I., Kim T., Park E.S., Rho J., Lee S.H., Kim N., Lee S.Y., Choi Y., Jeong D. Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts. Nat. Commun. 2021; 12(1): 2258. DOI: 10.1038/s41467-021-22565-7.
  27. Panina I.S., Filatova L.Ju., Kabanov A.V., Kljachko N.L. Issledovanie fiziko-himicheskih svojstv fermenta glutationperoksidazy tipa 1 i ego kompleksov s polijelektrolitami kak perspektivnyh agentov dlja lechenija zabolevanij central'noj nervnoj sistemy. Vestnik Moskovskogo universiteta. 2014; 55(3): 153157.
  28. Guillin O.M., Vindry C., Ohlmann T., Chavatte L. Selenium, Selenoproteins and Viral Infection. Nutrients. 2019; 11(9): 2101. DOI: 10.3390/nu11092101.
  29. Brigelius-Flohé R., Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013; 1830(5): 32893303. DOI: 10.1016/j.bbagen.2012.11.020.
  30. Arner E.S.J. Selective Evaluation of Thioredoxin Reductase Enzymatic Activities. Methods Mol. Biol. 2018; 1661: 301309. DOI: 10.1007/978-1-4939-7258-6_21.
  31. Liu X., Zhang Y., Lu W., Han Y., Yang J., Jiang W., You X., Luo Y., Wen S., Hu Y., Huang P. Mitochondrial TXNRD3 confers drug resistance via redox-mediated mechanism and is a potential therapeutic target in vivo. Redox. Biol. 2020; 36: 101652. DOI: 10.1016/j.redox.2020.101652.
  32. Tarrago L., Oheix E., Péterfi Z., Gladyshev V.N. Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity. Methods Mol. Biol. 2018; 1661: 285299. DOI: 10.1007/978-1-4939-7258-6_20.
  33. Fairweather-Tait S.J., Bao Y., Broadley M.R., Collings R., Ford D., Hesketh J.E., Hurst R. Selenium in human health and disease. Antioxid Redox Signal. 2011; 14(7): 13371383. DOI: 10.1089/ars.2010.3275.
  34. Golubkina N.A., Sindireva A.V., Zajcev V.F. Vnutriregional'naja variabel'nost' selenovogo statusa naselenija. Jug Rossii: jekologija, razvitie. 2017; 12(1): 107127.
  35. Sen'kevich O.A., Koval'skij Ju.G., Golubkina N.A. Monitoring soderzhanija selena v nekotoryh pishhevyh produktah Habarovska. Voprosy pitanija. 2018; 87(6): 8994.doi: 10.24411/0042-8833-2018-10070.
  36. World Health Organization. Vitamin and Mineral Requirements in Human Nutrition. 2nd ed. World Health Organization; Geneva, Switzerland: 2005. [(accessed on 15 September 2021)]. Available online: https://apps.who.int/iris/handle/10665/42716.
  37. Gać P., Czerwińska K., Macek P., Jaremków A., Mazur G., Pawlas K., Poręba R. The importance of selenium and zinc deficiency in cardiovascular disorders. Environ Toxicol Pharmacol. 2021; 82: 103553. DOI: 10.1016/j.etap.2020.103553.
  38. Shimada B.K., Alfulaij N., Seale L.A. The Impact of Selenium Deficiency on Cardiovascular Function. Int. J. Mol. Sci. 2021; 22(19): 10713. DOI: 10.3390/ijms221910713.
  39. Flohe L. Selenium in peroxide metabolism. Med. Klin. 1997; 92(3): 5–7. DOI: 10.1007/BF03041948.
  40. Mirnamniha M., Faroughi F., Tahmasbpour E., Ebrahimi P., Harchegani A.B. An overview on role of some trace elements in human reproductive health, sperm func-tion and fertilization process. Rev. Environ. Health. 2019; 34(4): 339348. DOI: 10.1515/reveh-2019-0008.
  41. Mistry H.D., Pipkin F.B., Redman C.W.G., Poston L. Selenium in reproductive health. Am. J. Obstet. Gynecol. 2012; 206(1): 21–30. DOI: 10.1016/j.ajog.2011.07.034.
  42. Nikniaz L., Mahavi R., Ostadrahimi A., Nikniaz Z., Taghipour S. Synbiotic supplementation is not effective on breast milk selenium concentrations and growth of exclusively breast fed infants: a pilot study. Int. J. Vitam. Nutr. Res. 2019; 89(1–2): 7379. DOI: 10.1024/0300-9831/a000549.
  43. Loscalzo J. Keshandisease, seleniumdeficiency, andtheselenoproteome. N. Engl. J. Med. 2014; 370(18): 17561560. DOI: 10.1056/NEJMcibr1402199.
  44. Molteni C.G., Principi N., Esposito S. Reactive oxygen and nitrogen species during viral infections. Free Radic. Res. 2014; 48(10): 1163–1169. DOI: 10.3109/10715762.2014.945443.
  45. Polubojarinov P.A., Elistratov D.G., Shvec V.I. Metabolizm i mehanizm toksichnosti selensoderzhashhih preparatov, ispol'zuemyh dlja korrekcii deficita mikrojelementa selena. Tonkie himicheskie tehnologii.2019; 14(1): 5–24.
  46. Gorham J., Moreau A., Corazza F., Peluso L., Ponthieux F., Talamonti M., Izzi A., Nagant C., Ndieugnou Djangang N., Garufi A., Creteur J., Taccone F.S. Interleukine-6 in critically ill COVID-19 patients: A retrospective analysis. PLoS One. 2020;1 5(12): e0244628. DOI: 10.1371/journal.pone.0244628.
  47. Bermano G., Méplan C., Mercer D.K., Hesketh J.E. Selenium and viral infection: are there lessons for COVID-19? Br. J. Nutr. 2021; 125(6): 618627. DOI: 10.1017/S0007114520003128.
  48. Steinbrenner H., Al-Quraishy S., Dkhil M.A., Wunderlich F., Sies H. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv. Nutr. 2015; 6(1): 7382. DOI: 10.3945/an.114.007575.
  49. Notz Q., Herrmann J., Schlesinger T., Helmer P., Sudowe S., Sun Q., Hackler J., Roeder D., Lotz C., Meybohm P., Kranke P., Schomburg L., Stoppe C. Clinical Significance of Micronutrient Supplementation in Critically Ill COVID-19 Patients with Severe ARDS. Nutrients. 2021; 13(6): 2113. DOI: 10.3390/nu13062113.
  50. Moghaddam A., Heller R.A., Sun Q., Seelig J., Cherkezov A., Seibert L., Hackler J., Seemann P., Diegmann J., Pilz M., Bachmann M., Minich W.B., Schomburg L. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020; 12(7): 2098. DOI: 10.3390/nu12072098.
  51. Notz Q., Herrmann J., Schlesinger T., Helmer P., Sudowe S., Sun Q., Hackler J., Roeder D., Lotz C., Meybohm P., Kranke P., Schomburg L., Stoppe C. Clinical Significance of Micronutrient Supplementation in Critically Ill COVID-19 Patients with Severe ARDS. Nutrients. 2021; 13(6): 2113. DOI: 10.3390/nu13062113.
  52. Im J.H., Je Y.S., Baek J., Chung M.H., Kwon H.Y., Lee J.S. Nutritional status of patients with COVID-19. Int. J. Infect. Dis. 2020; 100:390393. DOI: 10.1016/j.ijid.2020.08.018.
  53. Zhang J., Taylor E.W., Bennett K., Saad R., Rayman M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr. 2020; 111(6): 12971299. DOI: 10.1093/ajcn/nqaa095.
  54. Alexander J., Tinkov A., Strand T.A., Alehagen U., Skalny A. Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. Aaseth J. Nutrients. 2020; 12(8): 2358. DOI: 10.3390/nu12082358.
  55. Polubojarinov P.A. Biofortifikacija rastenij astragala Astragala sherstistocvetkovogo (Astragalus dasyanthus Pall.) aminokislotoj L-selenocisteinom. URL: https://www.seret-dolgolet.ru/biofortifikatsiya-rasteniy-astra-galasherstistotsvetkovogo-astragalus-dasyanthus-pall-amino-kislotoy-lselenotsistinom/ (data obrashheni-ja 13.12.2021).
  56. Polubojarinov P.A., Elistratov D.G., Shvec V.I. Metabolizm i mehanizm toksichnosti selensoderzhashhih preparatov, ispol'zuemyh dlja korrekcii deficita mikrojele-menta selena. Tonkie himicheskie tehnologii. 2019; 14(1): 524.
  57. Shahidi F., De Camargo A.C. Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits. Int. J. Mol. Sci. 2016; 17(10): 1745. DOI: 10.3390/ijms17101745.
  58. Borisov V.V. Mikrojelementy selen i cink v organizme zhenshhiny i muzhchiny: problemy i reshenija. Consilium Medicum. 2018; 20(7): 63–68.
  59. Dedov D.V. Celen i selensoderzhashhie preparaty: zna-chenie dlja organizma i profilaktiki razlichnyh zabolevanij. Farmacija. 2021; 70(8): 5457. DOI: 10.29296/25419218-2021-08-09.