Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

STUDY OF POLOXAMER 188 AND POLYETHYLENE GLYCOLS INFLUENCE ON IN SITU SYSTEMS THERMOREVERSIBLE PROPERTIES

DOI: https://doi.org/10.29296/25877313-2022-10-03
Download full text PDF
Issue: 
10
Year: 
2022

E.O. Bakhrushina
Ph.D. (Pharm.), Assocate Professor, Departments of Pharmaceutical Technology, Institute of Pharmacy named after A.P. Nelyubin;
I.M. Sechenov First Moscow State Medical University Ministry of Health of the Russian Federation (Sechenov University)
(Moscow, Russia)
E-mail: bakhrushina_e_o@staff.sechenov.ru
M.V. Pomyutkina
Student, Educational Department, Institute of Pharmacy named after A.P. Nelyubin (Moscow, Russia)
A.A. Popova
Student, Educational Department, Institute of Pharmacy named after A.P. Nelyubin (Moscow, Russia)
A.I. Khodenok
Student, Educational Department, Institute of Pharmacy named after A.P. Nelyubin (Moscow, Russia)
N.B. Demina
Dr.Sc. (Pharm.), Professor, Department of Pharmaceutical Technology,
Institute of Pharmacy named after A.P. Nelyubin (Moscow, Russia)

Relevance. Poloxamers are the most promising polymers in modern pharmaceutical development due to their ability to make a sol-gel phase transi-tion under physiological conditions and provide a sustained release, so these polymers are ideal for creating thermoreversible in situ drug delivery sys-tems. Complexes with other polymers are created to give optimal characteristics to such systems. Aim. Study of poloxamer 188 and polyethylene glycols influence on in situ systems thermoreversible properties (gelation temperature, viscosity). Material and methods. Commercial samples of poloxamer 407, poloxamer 188 and polyethylene glycols from BASF company were used. Experi-mental compositions were obtained by dispersing the components in purified water on IKA C-mag HS 7 digital magnetic stirrer (IKA, Germany) and sub-sequent gel structuring in a refrigerator. The gelation temperature was measured once a week for 12 months, from the moment the sample in a pol-ymer container removed from the storage place, settled and then was immersed in the ODA-LQ40 ultrasonic bath (ODA, Russia) in the heating mode. As an indicator of the gelation temperature, the values determined with an increase of sample dynamic viscosity in the process of mixing using a measuring thermal probe were taken. The stability of the indicator was described using statistical analysis. For the most stable compositions with op-timal temperatures rheological properties were studied on a coaxial rotational viscometer Lamy Rheology RM 220 (Lamy, France). Results. In long-term tests, a direct dependence of the average gelation temperature on the concentration of poloxamer 188 was revealed. It was shown the addition of polyethylene glycol 1500 not only increase the gelation temperature, but also positively affects its stability. Also, rheological characteristics were studied. Conclusions. The effect of poloxamer 188 and polyethylene glycol 1500 on the gelation temperature and its stability during long-term storage, as well as the promise of these polymers for the pharmaceutical development of in situ thermoreversible systems, was shown in our study.

Keywords: 
poloxamer 188
polyethylene glycols
in situ systems
thermoreversible gel
rheolog
phase transition temperature

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Chen J., Zhou R., Li L., et al. Mechanical, Rheological and Release Behaviors of a Poloxamer 407/ Poloxamer 188/Carbopol 940 Thermosensitive Composite Hydrogel. Molecules. 2013; 18(10): 12415–12425.
  2. Abdeltawab H., Svirskis D., Sharma M. Formulation strategies to modulate drug release from poloxamer based in situ gelling sys-tems. Expert Opinion on Drug Delivery. 2020; 17(4): 495–509.
  3. Пальвинский А.Г., Бахрушина Е.О., Холина П.А., Краснюк И.И. Биофармацевтическое изучение стоматологического геля берберина бисульфата. Вопросы биологической, медицинской и фармацевтической химии. 2022; 25(3) (Pal'vinskij A.G., Bah-rushina E.O., Holina P.A., Krasnyuk I.I. Biofarmacevticheskoe izuchenie stomatologicheskogo gelja berberina bisul'fata. Voprosy biologicheskoj, medicinskoj i farmacevtiche-skoj himii. 2022; 25(3)).
  4. He Z.X., Wang Z.H., Zhang H.H., Pan X., Su W.R., Dan L., Wu C.B. Doxycycline and hydroxypropyl-beita-cyclodextrin complexin poloxamer thermalsensitive hydrogel for ophthalmic delivery. Acta Pharma. Sin. 2011; 1: 254–260.
  5. Alexandridis P., Holzwarth J.F., Hatton T.A. Micellization of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Ox-ide) Triblock Copolymers in Aqueous-Solutions-Thermo-dynamics of Copolymer Association. Macromolecules. 1994; 27: 2414–2425.
  6. Yuan Y., Ying C., Li Zh., et al. Thermosensitive and mucoadhesive in situ gel based on poloxamer as new carrier for rectal administra-tion of nimesulide. International Journal of Pharmaceutics. 2012; 430(1): 114–119.
  7. Russo E., Villa C. Poloxamer Hydrogels for Biomedical Applica-tions. Pharmaceutics. 2019; 11(12): E671.
  8. Edsman K., Carlfors J., Petersson R. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use Eur. J. Pharm. Sci. 1998; 6: 105112.