КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ ФЛАВОНОИДОВ С АДЕНОЗИНОВЫМИ РЕЦЕПТОРАМИ

DOI: https://doi.org/10.29296/25877313-2019-01-06
Номер журнала: 
1
Год издания: 
2019

Г.Ф. Куракин студент, лечебный факультет, ФГБОУ ВО Тверской ГМУ Минздрава России E-mail: phyzyk@mail.ru Н.П. Лопина к.х.н., доцент, кафедра химии, ФГБОУ ВО Тверской ГМУ Минздрава России Г.Е. Бордина к.б.н., доцент, кафедра химии, ФГБОУ ВО Тверской ГМУ Минздрава России

Разработана рецептор-обоснованная модель связывания флавоноидов с аденозиновыми рецепторами. Показано, что в полученной модели свя-зывание флавоноидов с аденозиновыми рецепторами аналогично связыванию ксантиновых антагонистов. Селективность флавоноидов к опреде-лённым подтипам рецепторов предположительно объясняется формой гидрофобных карманов. Полученная модель может быть использована для дизайна новых антагонистов аденозиновых рецепторов и как отправная точка при моделировании связывания с данными рецепторами других веществ растительного происхождения.

Ключевые слова: 
флавоноиды
аденозиновые рецепторы
компьютерное моделирование
рецептор-обоснованная модель

Список литературы: 
  1. Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: an overview // Journal of Nutritional Science. 2016; 5.
  2. Kim H.P., Son K.H., Chang H.W., Kang, S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms // Journal of Pharmacological Sciences. 2004; 96 (3): 229–245.
  3. Ren W. Qiao Z., Wang H., Zhu L., Zhang L. Flavonoids: promising anticancer agents // Medicinal Research Reviews. 2003; 23 (4): 519–534.
  4. Jacobson K.A., Moro S., Manthey J.A., West P.L., Ji X.D. Interactions of flavones and other phytochemicals with adenosine receptors // Flavonoids in Cell Function / Ed. B.S. Buslig, J.A. Manthey Boston: Springer, 2002; P. 163–171.
  5. Moro S., van Rhee A.M., Sanders L.H., Jacobson K.A. Flavonoid derivatives as adenosine receptor antagonists: a comparison of the hypothetical receptor binding site based on a comparative molecular field analysis model //Journal of Medicinal Chemistry. 1998; 41 (1): 46–52.
  6. Alexander S.P. H. Flavonoids as antagonists at A1 adenosine receptors // Phytotherapy Research: An international journal devoted to pharmacological and toxicological evaluation of natural product derivatives. 2006; 20 (11): 1009–1012.
  7. Karton Y., Jiang J.L., Ji X.D., Melman N., Olah M.E., Stiles G.L., Jacobson K.A. Synthesis and biological activities of flavonoid derivatives as A3 adenosine receptor antagonists // Journal of Medicinal Chemistry. 1996; 39 (12): 2293–2301.
  8. Sachdeva S., Gupta M. Adenosine and its receptors as therapeutic targets: an overview // Saudi Pharmaceutical Journal. 2013; 21 (3): 245–253.
  9. Schingnitz G., Küfner-Mühl U., Ensinger H., Lehr E., Kuhn F. J. Selective A1-antagonists for treatment of cognitive deficits // Nucleosides & Nucleotides. 1991; 10 (5): 1067–1076.
  10. Almerico A.M., Tutone M., Pantano L., Lauria A. A3 adenosine receptor: Homology modeling and 3D-QSAR studies // Journal of Molecular Graphics and Modelling. 2013; 42: 60–72.
  11. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne, P.E. The Protein Data Bank // Nucleic Acids Research. 2000; 28 (1): 235–242.
  12. Draper-Joyce C.J., Khoshouei M., Thal D. M. et al. Structure of the adenosine-bound human adenosine A1 receptor–Gi complex // Nature. 2018; 558 (7711): 559–563.
  13. Lebon G., Warne T., Edwards P.C., Bennett K., Langmead C.J., Leslie A.G., Tate C.G. Agonist-bound adenosine A2a receptor structures reveal common features of GPCR activation // Nature. 2011; 474 (7352): 521–525.
  14. Jarmolinska A.I., Kadlof M., Dabrowski-Tumanski P., Sulkowska J.I. GapRepairer – a server to model a structural gap and validate it using topological analysis // Bioinformatics. 2018; 1: 8.
  15. Kim S., Thiessen P.A., Bolton E.E. et al. PubChem Substance and Compound databases // Nucleic Acids Res. 2016. V. 44. Database issue. P. D1202–D1213.
  16. Irwin J.J., Sterling T., Mysinger M.M., Bolstad E.S., Coleman R.G. ZINC: a free tool to discover chemistry for biology // Journal of Chemical Information and modeling. 2012; 52 (7): 1757–1768.
  17. Harding S.D., Sharman J.L., Faccenda E. et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY // Nucleic Acids Research. 2018; 46 (D1): D1091–D1106.
  18. Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes // Nucleic Acids Research. 2018; 46 (W1): W296–W303.
  19. Guex N., Peitsch M. C., Schwede T. Automated comparative protein structure modeling with SWISS‐MODEL and Swiss‐PdbViewer: A historical perspective // Electrophoresis. 2009; 30 (S1): S162–S173.
  20. The UniProt Consortium. UniProt: the universal protein knowledgebase // Nucleic Acids Research. 2017; 45 (D1): D158–D169.
  21. Salvatore C.A., Jacobson M.A., Taylor H.E., Linden J., Johnson R.G. Molecular cloning and characterization of the human A3 adenosine receptor // Proc. Natl. Acad. Sci. U.S.A. 1993; 90 (21): 10365–10369.
  22. Lee G.R., Seok C. Galaxy7TM: flexible GPCR–ligand docking by structure refinement // Nucleic Acids Research. 2016; 44 (W1): W502–W506.
  23. Stierand K., Maaß P.C., Rarey M. Molecular complexes at a glance: automated generation of two-dimensional complex diagrams // Bioinformatics. 2006; 22 (14): 1710–1716.
  24. Stierand K., Rarey M. Drawing the PDB: protein−ligand complexes in two dimensions // ACS Medicinal Chemistry Letters. 2010; 1 (9): 540–545.
  25. Jiménez Luna J., Skalic M., Martinez-Rosell G. et al. KDEEP: Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks // Journal of Chemical Information and Modeling. 2018; 58 (2): 287–296.
  26. Ashkenazy H., Abadi S., Martz E., Chay O., Mayrose I., Pupko T., Ben-Tal N. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules // Nucleic Acids Research. 2016; 44 (W1): W344–W350.
  27. Doré A.S., Robertson N., Errey J. C. et al. Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine // Structure. 2011;19 (9) :1283–1293.
  28. Jaakola V.P., Griffith M.T., Hanson M.A. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist // Science. 2008; 322 (5905): 1211–1217.