Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

COMPUTATIONAL MODELLING OF INTERACTION BETWEEN FLAVONOIDS AND ADENOSINE RECEPTORS

DOI: https://doi.org/10.29296/25877313-2019-01-06
Download full text PDF
Issue: 
1
Year: 
2019

G.F. Kurakin Student, Faculty of General Medicine, Tver State Medical University E-mail: phyzyk@mail.ru N.P. Lopina Ph.D. (Chem.), Department of Chemistry, Tver State Medical University G.E. Bordina Ph.D. (Biol.), Department of Chemistry, Tver State Medical University

Presently, the possibility of invention of flavonoid-based medicines for treatment of therapeutical, neurological, oncological diseases is actively studied. Herewith, antagonistic activity of flavonoids on adenosine receptors is described. A model of interaction between flavonoids and adenosine re-ceptors is necessary for the prediction of possible adenosine receptor-mediated effects of flavonoids and for development of new adenosine receptor antagonists on their basis. Conversely, up to date, receptor-based models of flavonoid binding to adenosine receptors are absent. Research objective: obtaining of a receptor-based computational model of flavonoid binding to adenosine receptors. Materials and methods. Ligand structures from databases PubChem and ZINC were used. Structures of A1 and A2A adenosine receptors were obtained from Protein Data Bank (PDB). A3 adenosine receptor was homology modelled using Swiss-Model server. The interactions between flavonoids and adenosine receptors were analysed using flexible docking on Galaxy7TM server. The binding energies were indirectly evaluated by pose ranges in Galaxy7TM docking results and were also calculated using KDEEP server based on neural network. For several flavonoids, the ligand-receptor interactions were additionally analysed using PoseView online service. Amino acid conservation was studied using ConSurf server and UniProt sequences. Results. The most flavonoids form a hydrogen bond with asparagine residue (Asn254 in А1, Asn253 in А2А, Asn250 in А3) of adenosine receptors. Other hydrogen bonds were present occasionally in a case of some flavonoids. All flavonoids form π-electronic and hydrophobic interactions with phenylalanine residue (Phe171 in А1, Phe168 in А2А, Phe168 in А3). Hydrophobic contacts with conserved isoleucine (Ile274 in A1 and A2A, Ile268 in A3) and leucine (Leu250 in A1, Leu249 in A2A, Leu246 in A3) residues were also present. These interactions resemble those in the case of xanthine-based antagonists. Obtained models accord with experimental data and allows to range flavo-nois by affinity to certain types of adenosine receptors with feasible accuracy. In our models, selectivity of flavonoids toward certain types of adenosine receptors and reinforcement of binding under flavonoid alkylation were determined by the form of hydrophobic pockets of adenosine receptors. Conclusion. The receptor-based model of flavonoid binding to adenosine receptors was obtained. It can be used for the design of adenosine re-ceptor-targeted drugs and as starting point for modelling of interactions between other phytochemicals and adenosine receptors.

Keywords: 
flavonoids
adenosine receptors
computational modelling
receptor-based model

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: an overview // Journal of Nutritional Science. 2016; 5.
  2. Kim H.P., Son K.H., Chang H.W., Kang, S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms // Journal of Pharmacological Sciences. 2004; 96 (3): 229–245.
  3. Ren W. Qiao Z., Wang H., Zhu L., Zhang L. Flavonoids: promising anticancer agents // Medicinal Research Reviews. 2003; 23 (4): 519–534.
  4. Jacobson K.A., Moro S., Manthey J.A., West P.L., Ji X.D. Interactions of flavones and other phytochemicals with adenosine receptors // Flavonoids in Cell Function / Ed. B.S. Buslig, J.A. Manthey Boston: Springer, 2002; P. 163–171.
  5. Moro S., van Rhee A.M., Sanders L.H., Jacobson K.A. Flavonoid derivatives as adenosine receptor antagonists: a comparison of the hypothetical receptor binding site based on a comparative molecular field analysis model //Journal of Medicinal Chemistry. 1998; 41 (1): 46–52.
  6. Alexander S.P. H. Flavonoids as antagonists at A1 adenosine receptors // Phytotherapy Research: An international journal devoted to pharmacological and toxicological evaluation of natural product derivatives. 2006; 20 (11): 1009–1012.
  7. Karton Y., Jiang J.L., Ji X.D., Melman N., Olah M.E., Stiles G.L., Jacobson K.A. Synthesis and biological activities of flavonoid derivatives as A3 adenosine receptor antagonists // Journal of Medicinal Chemistry. 1996; 39 (12): 2293–2301.
  8. Sachdeva S., Gupta M. Adenosine and its receptors as therapeutic targets: an overview // Saudi Pharmaceutical Journal. 2013; 21 (3): 245–253.
  9. Schingnitz G., Küfner-Mühl U., Ensinger H., Lehr E., Kuhn F. J. Selective A1-antagonists for treatment of cognitive deficits // Nucleosides & Nucleotides. 1991; 10 (5): 1067–1076.
  10. Almerico A.M., Tutone M., Pantano L., Lauria A. A3 adenosine receptor: Homology modeling and 3D-QSAR studies // Journal of Molecular Graphics and Modelling. 2013; 42: 60–72.
  11. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne, P.E. The Protein Data Bank // Nucleic Acids Research. 2000; 28 (1): 235–242.
  12. Draper-Joyce C.J., Khoshouei M., Thal D. M. et al. Structure of the adenosine-bound human adenosine A1 receptor–Gi complex // Nature. 2018; 558 (7711): 559–563.
  13. Lebon G., Warne T., Edwards P.C., Bennett K., Langmead C.J., Leslie A.G., Tate C.G. Agonist-bound adenosine A2a receptor structures reveal common features of GPCR activation // Nature. 2011; 474 (7352): 521–525.
  14. Jarmolinska A.I., Kadlof M., Dabrowski-Tumanski P., Sulkowska J.I. GapRepairer – a server to model a structural gap and validate it using topological analysis // Bioinformatics. 2018; 1: 8.
  15. Kim S., Thiessen P.A., Bolton E.E. et al. PubChem Substance and Compound databases // Nucleic Acids Res. 2016. V. 44. Database issue. P. D1202–D1213.
  16. Irwin J.J., Sterling T., Mysinger M.M., Bolstad E.S., Coleman R.G. ZINC: a free tool to discover chemistry for biology // Journal of Chemical Information and modeling. 2012; 52 (7): 1757–1768.
  17. Harding S.D., Sharman J.L., Faccenda E. et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY // Nucleic Acids Research. 2018; 46 (D1): D1091–D1106.
  18. Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes // Nucleic Acids Research. 2018; 46 (W1): W296–W303.
  19. Guex N., Peitsch M. C., Schwede T. Automated comparative protein structure modeling with SWISS‐MODEL and Swiss‐PdbViewer: A historical perspective // Electrophoresis. 2009; 30 (S1): S162–S173.
  20. The UniProt Consortium. UniProt: the universal protein knowledgebase // Nucleic Acids Research. 2017; 45 (D1): D158–D169.
  21. Salvatore C.A., Jacobson M.A., Taylor H.E., Linden J., Johnson R.G. Molecular cloning and characterization of the human A3 adenosine receptor // Proc. Natl. Acad. Sci. U.S.A. 1993; 90 (21): 10365–10369.
  22. Lee G.R., Seok C. Galaxy7TM: flexible GPCR–ligand docking by structure refinement // Nucleic Acids Research. 2016; 44 (W1): W502–W506.
  23. Stierand K., Maaß P.C., Rarey M. Molecular complexes at a glance: automated generation of two-dimensional complex diagrams // Bioinformatics. 2006; 22 (14): 1710–1716.
  24. Stierand K., Rarey M. Drawing the PDB: protein−ligand complexes in two dimensions // ACS Medicinal Chemistry Letters. 2010; 1 (9): 540–545.
  25. Jiménez Luna J., Skalic M., Martinez-Rosell G. et al. KDEEP: Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks // Journal of Chemical Information and Modeling. 2018; 58 (2): 287–296.
  26. Ashkenazy H., Abadi S., Martz E., Chay O., Mayrose I., Pupko T., Ben-Tal N. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules // Nucleic Acids Research. 2016; 44 (W1): W344–W350.
  27. Doré A.S., Robertson N., Errey J. C. et al. Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine // Structure. 2011;19 (9) :1283–1293.
  28. Jaakola V.P., Griffith M.T., Hanson M.A. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist // Science. 2008; 322 (5905): 1211–1217.