Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

THE COMPLEX POLYMER COMPOSITIONS BASED ON ANTIBIOTICS LINEZOLID, RIFABUTIN, PROTIONAMIDE

DOI: https://doi.org/10.29296/25877313-2018-05-05
Download full text PDF
Issue: 
5
Year: 
2018

A.I. Murav′eva Laboratory Assistant Researcher, Laboratory of Cell Biology and Molecular Medicine, Scientific Research Center «Kurchatov Institute» (Moscow) E-mail: anna_muraveva_91@mail.ru V.V. Zavarzina Junior Research Scientist, Laboratory of Cell Biology and Molecular Medicine, Scientific Research Center «Kurchatov Institute» (Moscow) N.V. Gukasova Ph.D. (Biol.), Senior Research Scientist, Laboratory of Cell Biology and Molecular Medicine, Scientific Research Center «Kurchatov Institute» (Moscow) S.L. Kuznetsov Senior Research Scientist, Laboratory of Cell Biology and Molecular Medicine, Scientific Research Center «Kurchatov Institute» (Moscow) I.A. Tubasheva Ph.D. (Chem.), Leading Research Scientist, Laboratory of Cell Biology and Molecular Medicine, Scientific Research Center «Kurchatov Institute» (Moscow) E.A. Vorontsov Ph.D. (Chem.), Leading Research Scientist, Laboratory of Cell Biology and Molecular Medicine, Scientific Research Center «Kurchatov Institute» (Moscow)

One of the ways to increase the effectiveness of drugs is to create a transport system for their delivery to the target organ, by including the drug in the biodegradable polymer. The aim of the study was to obtain complex antimicrobial compositions include antibiotics linezolid, rifabutin, protionamide, as well as a copolymer of lactic and glycolic acids, D-mannitol and polyvinyl alcohol; to study the antimicrobial activity of the obtained polymer compositions of antibiotics against gram-positive, gram-negative bacteria and the nontuberculous strain-isolate Mycobacterium spp (R).The polymer compositions of antibiotics were prepared by the method of simple emulsions. The particle size distribution of the polymer composition samples was determined by the dynamic light scattering method in the aqueous suspension. The content of antibiotics was determined in the polymer compositions by high performance liquid chromatography (HPLC). The antibacterial activity of the samples was studied for control strains of microorganisms: Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 29213, Staphylococcus aureus ATCC 43300 (MRSA), Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Mycobacterium spp (R). The results and discussion: equal mass ratios of antibiotics and a fivefold excess of polymer were taken to obtain complex polymer compositions. The content of each antibiotic was 4.0−4.3% in the polymer compositions. The average hydrodynamic diameter of the particles was 314 nm (LR PLGA), 487 nm (LRP PLGA), 300 nm (L PLGA), 342 nm (R PLGA) and 371 nm (P PLGA). The complex polymer compositions in respect to the tested strains of bacteria had a similar or higher antibacterial activity than the individual antibiotic substances in respect to the tested strains of bacteria. The conclusion: the complex polymer compositions linezolid + rifabutin (LR-PLGA) and linezolid + rifabutin + protionamide (LRP-PLGA) complexes were obtained. Higher antibacterial activity was observed for the polymer composition LR-PLGA against E. faecalis and S. aureus strains as compared to individual substances, and for the polymer composition LRP-PLGA against the methicillin resistant strain S. aureus (MRSA).

Keywords: 
antibiotics
linezolid
rifabutin
protionamide
PLGA
polymer particles
antibacterial activity

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Patent № 2195937 (RF). Kombinirovannyj protivotuberkuleznyj preparat (rizobutol). / V.I. Golyshevskaja,O.V. Demihova, V.V. Erohin, V.I. Kiselev, M.I.Perel'man, E.S. Severin.
  2. Patent № 2182483 (RF). Kombinirovannoe protivotuberkuleznoe sredstvo i sposob ego poluchenija / OAO«Himiko-farmatsevticheskij kombinat «Akrihin».
  3. Sokolova G.B., Semenova O.V., Bogadel'nikova I.V. i dr. Majrin-P v kompleksnoj terapii tuberkuleza // Antibiotiki i himioterapija. 2002. T. 47. № 6. S. 18−21.
  4. Kunichan A.D., Sokolova G.B., Perel'man M.I. Vlijanie glutoksima na rost lekarstvennorezistentnyh mikobakterij tuberkuleza pri ego sochetanii s protivotuberkuleznymi preparatami vtorogo rjada v kul'ture legochnoj tkani myshej // Antibiotiki i himioterapija. 2002. T. 47. № 6. S. 18−21.
  5. Patent № 21461305 (RF). Farmatsevticheskij sostav, obladajuschij protivotuberkuleznoj aktivnost'ju / N.S. Novikova, I.I. Tjuljaev, N.I. Jurchenko, V.A. Bykov, B.I. Demchenko, A.P. Zuev.
  6. Patent № 21439006 (RF). Sposob poluchenija izoniazida prolongirovannogo dejstvija / V.A. Shkurupij, Ju.N. Kurunov, O.V. Grishin, A.V. Troitskij, L.A. Bogdanova, E.P. Guljaeva.
  7. Patent № 21858187 (RF). Kompozitsija dlja lechenija legochnyh infektsij / S.E. Gel'perina, A.E. Guljaev, A.A. Ivanov,M.A. Pal'tsev, E.S. Severin, S.E. Severin, I.N. Skidan.
  8. Patent № 21454988 (RF). Farmatsevticheskij sostav, soderzhaschij nanokapsuly, i sposob ego poluchenija / A. Vrankks,M. Demust'e, M. Deleer.
  9. Dutt M., Khuller G.K. Therapeutic Efficacy of Poly(DLLactide Co-Glycolide)-Encapsulated Antitubercular Drugs against Mycobacterium tuberculosis Infection Induced in Mice // Antimicrobial Agents and Chemotherapy. 2001. V. 45. № 1. P. 363−366.
  10. Johnson C.M., Pandey R., Sharma S., Khuller G.K., Basaraba R.J., Orme I.M., and Lenaerts A.J. Oral Therapy Using NanoparticleEncapsulated Antituberculosis Drugs in Guinea Pigs Infectedwith Mycobacterium tuberculosis // Antimicrobial Agents and Chemotherapy. 2005. V. 49. № 10. P. 4335−4338.
  11. Mitchison D.A., Fourie P.B. The near future: Improving the activity of rifamycins and pyrazinamide // Tuberculosis. 2010. V. 90. P. 177−181.
  12. Patent № 2327459 (RF). Lekarstvennoe sredstvo protivomikrobnogo dejstvija, sposob poluchenija lekarstvennogo preparata napravlennogo dejstvija, soderzhaschego nanochastitsy / E.S. Severin, L.N. Krjukov, E.A. Vorontsov,S.L. Kuznetsov, T.A. Pomazkova.13. Kuznetsova I.G., Dubovik E.G., Dubovik N.S., Komarov T.N.i dr. Bioraspredelenie polimernoj transportnoj formyrifabutina // Vestnik RAMN. 2015. T. 70. № 3. S. 366−371.
  13. Huang J., Chen Z., Li Y., Li L., Zhang G. Rifapentinelinezolidloaded PLGA microspheres for interventional therapy
  14. of cavitary pulmonary tuberculosis: preparation andin vitro characterization // Drug Des. Devel. Ther. 2017.V. 11. P. 585−592.
  15. Guo Z.Y., Zhang Q. Preparation and evaluation of lung targeting microspheres for protionamide in vitro and in vivo // Chin. Pharm. J. 2012. V. 47. № 22. P. 1834−1838.
  16. Lunn G. HPLC Methods for pharmaceutical analysis. V. 4: PZ. John Wiley & Sons. 2000. P. 612.
  17. Novikova A.A., Zavarzina V.V., Vorontcov E.A., Severin S.E., Severin E.S. Preparation of polymeric composition of linezolidand study of its antimicrobial activity in vitro // Nanotechnologies in Russia. 2014. V. 9. № 7−8. P. 453−456.
  18. Shtil'man M.I. Polimery mediko-biologicheskogo naznachenija. M.: Akademkniga. 2006. 400 s.
  19. Patent № 2257198 (RF). Kompozitsii mikrochastits i sposoby ih poluchenija / D.-H. Fang, M. Singh, D. O`Hejgan, M. Hora