Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

ANTIOXIDANT ACTIVITY OF NEW DERIVATIVES OF CHROMОNЕ-3-ALDEHYDE IN CONDITIONS OF MUSCLE DYSFUNCTION

DOI: https://doi.org/10.29296/25877313-2018-06-07
Download full text PDF
Issue: 
6
Year: 
2018

A.V. Voronkov Dr.Sc. (Med.), Associate Professor, Pyatigorsk Medical Pharmaceutical Institute-branch of the FSEI HE «Volgograd State Medical University» E-mail: prohor.77@mail.ru D.I. Pozdnyakov Lecturer, Pyatigorsk Medical Pharmaceutical Institute-branch of the FSEI HE «Volgograd State Medical University» E-mail: pozdniackow.dmitry@yandex.ru V.M. Rukovitsyna Post-graduate Student, Pyatigorsk Medical Pharmaceutical Institute-branch of the FSEI HE «Volgograd State Medical University» E-mail: rukovitcina.vika@mail.ru E.T. Oganesyan Dr.Sc. (Med.), Professor, Pyatigorsk Medical Pharmaceutical Institute-branch of the FSEI HE «Volgograd State Medical University» E-mail: edwardow@mail.ru

A study was conducted to assess the antioxidant activity of new derivatives of chromone-3-aldehyde in muscle dysfunction. Objects of the study were 5 new derived chromone-3-aldehyde Х3АNO2, Х3АОАС, Х3АN, Х3AF and X3ACL. Drug comparisons were made by Mexidol in a dose of 100 mg/kg. Studied compounds and drugs of comparison were administered per os, prophylactically for 7 days to muscle dysfunction. Muscle dysfunction was simu-lated by electromyostimulation method. Evaluated the change in the concentration of malonic dialdehyde, diene conjugates, superoxide dismutase activity, glutathione reductase activity, glutathione peroxidase activity, glukose-6-phosphate dehydrogenase and catalase activity. As a result, it was found that five compounds, which are based on the privileged nucleus of chromone, have antioxidant activity, expressed in inhi-bition of lipid peroxidation and the restoration of enzyme activity of endogenous antioxidant protection. The most pronounced antioxidant properties in several of the studied objects has a connection Х3АОАС, on the background of which the concentration of malondialdehyde and diene conjugates has de-creased by 2.6 times (p

Keywords: 
antioxidants
muscle dysfunction
oxidative stress
derivatives of chromone

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Salazar-Degracia A., Busquets S., Argilés J.M., et. al. Formoterol attenuates increased oxidative stress and myosin protein loss in respiratory and limb muscles of cancer cachectic rats // Peer J. 2017, 5:e4109. doi:10.7717/peerj.4109.
  2. Barreiro E., Bustamante V., Cejudo P., et. al. Guidelines for the evaluation and treatment of muscle dysfunction in patients with chronic obstructive pulmonary disease // Archivos de Bronconeumología. 2015; 51:384–395. doi: 10.1016/j.arbres.2015.04.011.
  3. Ryan M.J., Jackson J.R., Hao Y., et. al. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice // Free radical biology & medicine. 2011;51(1):38-52. doi:10.1016/j.freeradbiomed.2011.04.002.
  4. Powers S.K., Ji L.L., Kavazis A.N., Jackson M.J. Reactive oxygen species: impact on skeletal muscle // Comprehensive Physiology. 2011, 1(2):941-969. doi:10.1002/cphy.c100054.
  5. Kozakowska M., Pietraszek-Gremplewicz K., Jozkowicz A., Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes // Journal of Muscle Research and Cell Motility. 2015, 36:377-393. doi:10.1007/s10974-015-9438-9.
  6. Barbieri E., Sestili P. Reactive oxygen species in skeletal muscle signaling // J. Signal Transduct. 2012, 2012:982794.
  7. Reid M.B. Free radicals and muscle fatigue: Of ROS, canaries, and the IOC // Free Radic. Biol. Med. 2008, 44:169–179.
  8. Yang Kuo L.M., Zhang L.J., Huang H.T., et. al. Antioxidant lignans and chromone glycosides from Eurya japonica // J. Nat. Prod. 2013, 76(4):580–587. doi: 10.1021/np3007638.
  9. Voronina T.A., Kapitsa I.G., Ivanova E.A. Cravnitel'noe issledovanie vlijanija meksido-la i mildronata na fizicheskuju rabotosposob-nost' v eksperimente // Zhurnal nevrologii i psihiatrii im. C.C. Korsakova. 2014. № 117(4). S. 71–74.
  10. Gregory N.S., Gibson-Corley K., Frey-Law L., et. al. Fatigue-enhanced hyperalgesia in response to muscle insult: induction and development occur in a sex-dependent manner // Pain. 2013, 154(12):2668–2676. doi:10.1016/j.pain.2013.07.047.
  11. Stal'naja I.D., Garishvili T.G. Metod opredelenija malonovogo dial'degida s pomo-sch'ju TBK // Sovremennye metody v biohimii / Pod. red. V.N. Orehovicha. M.: Meditsina. 1977. S. 44–46.
  12. Gavrilov V.B., Mishkorudnaja M.I. Spek-trofotometricheskoe opredelenie soderzhanija gidroperekisej lipidov v plazme krovi // La-boratornoe delo. 1983. № 3. S. 33–35.
  13. Koroljuk M.A. Metod opredelenija aktiv-nosti katalazy // Laboratornoe delo. 1988. № 1. S. 16–19.
  14. Kładna A., Berczyński P., Piechowska T., et. al. Studies on the antioxidant activities of some new chromone compounds // Luminescence. 2014, 29:846–853, doi: 10.1002/bio.2631.
  15. Wang X., Gao B., Liu X., et al. Salinity stress induces the production of 2-(2-phenylethyl)chromones and regulates novel classes of responsive genes involved in signal transduction in Aquilaria sinensis calli // BMC Plant Biology. 2016, 16:119. doi:10.1186/s12870-016-0803-7