S.V. Chulkova Ph.D. (Med.), Senior Research Scientist, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of Russia (Moscow); N.I. Pirogov Russian National Research Institute, Ministry of Health of Russia (Moscow); ORCID: 0000-0003-4412-5019 E-mail:

Each own gland epithelium of the gastric mucosa consists of various specialized cells and a small number of discrete stem cells of the stomach that play a key role. They are capable of self-renewal, have multipotent properties and the source of specialized epithelium of the cells of the stomach. These properties determine the main role of stem cells in homeostasis, tissue repair and the development of malignant tumors. Subpopulations of cells with stem cell functions, so-called cancer stem cells (CSCs), are the source for the development of a malignant tumor of the stomach: they are at the very beginning of the origin, growth and spread of the tumor, and they are also responsible for resistance to traditional drug antitumor therapy.

stomach cancer
gastric epithelial stem cells
bone marrow stem cells
gene expression
resistance to the chemotherapy

  1. Vermeulen L., de Sousa e Melo F., Richel D.J., Medema J.P. The developing cancer stem-cell model: Clinical challenges and opportunities // The Lancet Oncology. 2012. V. 13.
  2. Dewi D.L., Ishii H., Kano Y., Nishikawa S., Haraguchi N., Sakai D., et al. Cancer stem cell theory in gastrointestinal malignancies: recent progress and upcoming challenges // Journal of gastroenterology. 2011. V. 46. R. 1145–1157.
  3. McDonald S.A.C., Greaves L.C., Gutierrez-Gonzalez L., Rodriguez-Justo M., Deheragoda M., Leedham S.J., et al. Mechanisms of Field Cancerization in the Human Stomach: The expansion and spread of mutated gastric stem cells // Gastroenterology. 2008. V. 134. № 2. R. 500–510.
  4. Li N., Clevers H. Coexistence of quiescent and active adult stem cells in mammals // Science. 2010. V. 327. R. 542–545.
  5. Karam S.M., Leblond C.P. Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell // Anat. Rec. 1993. V. 236. № 2. R. 259–279.
  6. Lee E.R., Leblond C.P. Dynamic histology of the antral epithelilum in the mouse stomach: IV. Ultrastructure and renewal of gland cells // Am. J. Anat. 1985. V. 172. № 3. R. 241–259.
  7. Bjerknes M., Cheng H. Multipotential stem cells in adult mouse gastric epithelium // Am J. Physiol. Liver Physiol 2002. V. 283. № 3. R. G767– G777.
  8. Qiao X.T., Ziel J.W., McKimpson W., Madison B.B., Todisco A., Merchant J.L., et al. Prospective identification of a multilineage progenitor in murine stomach epithelium // Gastroenterology. 2007. V. 133. № 6.
  9. Barker N., Huch M., Kujala P., et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro // Cell. Stem. Cell. 2010. № 6. R. 25–36.
  10. Leushacke M., Ng A., Galle J., Loeffler M., Barker N. Lgr5+ Gastric Stem Cells Divide Symmetrically to Effect Epithelial Homeostasis in the Pylorus // Cell. Rep. 2013. V. 5. № 2.
  11. R. 349–356.
  12. Arnold K., Sarkar A., Yram M.A., Polo J.M., Bronson R., Sengupta S., et al. Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice // Cell. Stem. Cell. 2011. V. 9. № 4. R. 317–329.
  13. Quante M., Marrache F., Goldenring J.R., Wang T.C. TFF2 mRNA transcript expression marks a gland progenitor cell of the gastric oxyntic mucosa // Gastroenterology. 2010. V. 139. № 6.
  14. Stange D.E., Koo B.K., Huch M., Sibbel G., Basak O., Lyubimova A., et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium // Cell. 2013. V. 155. № 2.
  15. Hayakawa Y., Ariyama H., Stancikova J., Sakitani K., Asfaha S., Renz B.W., et al. Mist1 Expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche // Cancer Cell. 2015. V. 28. № 6. R. 800–814.
  16. Khurana S.S., Riehl T.E., Moore B.D., Fassan M., Rugge M., Romero-Gallo J., et al. The hyaluronic acid receptor CD44 coordinates normal and metaplastic gastric epithelial proge-nitor cell proliferation // J. Biol. Chem. 2013. V. 288. № 22. R. 16085–16097.
  17. Simon E., Petke D., Böger C., Behrens H.-M., Warneke V., Ebert M., et al. The spatial distribution of LGR5+ cells correlates with gastric cancer progression // PLoS One [Internet]. 2012. V. 7. № 4. R. e35486. journal.pone.0035486
  18. Nozaki K., Ogawa M., Williams J.A., Lafleur B.J., Ng V., Drapkin R.I., et al. A molecular signature of gastric metaplasia arising in response to acute parietal cell loss // Gastroenterology. 2008. V. 134. № 2. R. 511–522.
  19. Bessède E., Staedel C., Acuña Amador L.A., Nguyen P.H., Chambonnier L., Hatakeyama M., et al. Helicobacter pylori generates cells with cancer stem cell properties via epitheli-al-mesenchymal transition-like changes // Oncogene. 2014. V. 33. № 32. R. 4123–4131.
  20. Uehara T., Ma D., Yao Y., Lynch J.P., Morales K., Ziober A., et al. H. pylori infection is associated with DNA damage of Lgr5-positive epithelial stem cells in the stomach of patients with gastric cancer // Dig. Dis. Sci. [Internet]. 2012.
  21. Shimada S., Mimata A., Sekine M., Mogushi K., Akiyama Y., Fukamachi H., et al. Synergistic tumour suppressor activity of E-cadherin and p53 in a conditional mouse model for metastatic diffuse-type gastric cancer // Gut. 2012. V. 61. № 3.
  22. R. 344–353.
  23. Houghton J., Stoicov C., Nomura S., Rogers A.B., Carlson J., Li H., et al. Gastric cancer originating from bone marrow-derived cells // Science. 2004. V. 306. № 5701. R. 1568–1571.
  24. Varon C., Dubus P., Mazurier F., Asencio C., Chambonnier L., Ferrand J., et al. Helicobacter pylori infection recruits bone marrow-derived cells that participate in gastric preneoplasia in mice // Gastroenterology. 2012. V. 142. № 2. R. 281–291.
  25. Hutchinson L., Stenstrom B., Chen D., Piperdi B., Levey S., Lyle S., et al. Human Barrett’s Adenocarcinoma of the Esophagus, Associated Myofibroblasts, and Endothelium Can Arise from Bone Marrow-Derived Cells After Allogeneic Stem Cell Transplant // Stem. Cells. Dev. 2011. V. 20.
  26. № 1. R. 11–17. /10.1089 /scd.2010.0139
  27. Nguyen P.H., Giraud J., Chambonnier L., Dubus P., Wittkop L., Belleannee G., et al. Characterization of Biomarkers of
  28. tumorigenic and chemoresistant cancer stem cells in human gastric carcinoma // Clin. Cancer Res. 2017. V. 23. № 6.
  29. R. 1586–1597.
  30. Shackleton M., Quintana E., Fearon E.R., Morrison S.J. Heterogeneity in Cancer: Cancer Stem Cells versus Clonal Evolution // Cell. 2009. V. 138. R. 822–829.
  31. Lau W.M., Teng E., Chong H.S., Lopez K.A.P., Tay A.Y.L., Salto-Tellez M., et al. CD44v8-10 is a cancer-specific marker for gastric cancer stem cells // Cancer Res. 2014. V. 74. № 9. R. 2630–2641.
  32. Takaishi S., Okumura T., Tu S., Wang S.S.W., Shibata W., Vigneshwaran R., et al. Identification of gastric cancer stem cells using the cell surface marker CD44 // Stem. Cells. 2009. V. 27. № 5. R. 1006–1020.
  33. Nguyen P.H., Giraud J., Staedel C., Chambonnier L., Dubus P., Chevret E., et al. All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth // Oncogene. 2016. V. 35. № 43. R. 5619–5628.
  34. Staedel C., Varon C., Nguyen P.H., Vialet B., Chambonnier L., Rousseau B., et al. Inhibition of gastric tumor cell growth using seed-targeting LNA as specific, long-lasting microRNA Inhibitors // Mol. Ther. - Nucleic Acids. 2015. № 4.
  35. Houghton J., Stoicov C., Nomura S., et al. Gastric cancer originating from bone marrow-derived cells // Science. 2004. № 306. R. 1568–1571.
  36. Okumura T., Wang S.S., Takaishi S., et al. Identification of a bone marrow-derived mesenchymal progenitor cell subset that can contribute to the gastric epithelium // Lab. Invest. 2009. № 89. R. 1410–1422.