NATURAL COMPOUNDS WITH ANTICOAGULANT ACTION (REVIEW)

DOI: https://doi.org/10.29296/25877313-2019-02-01
Download full text PDF
Issue: 
2
Year: 
2019

D.I. Boyarintsev Assistant, Department of Biological Chemestry, Tyumen State Medical University of the Ministry of Health of the Russian Federation E-mail: bdy0710@yandex.ru E.P. Kalinin Ph.D. (Biol.), Associate Professor, Department of Biological Chemestry, Tyumen State Medical University of the Ministry of Health of the Russian Federation I.V. Ralchenko Dr.Sc. (Biol.), Professor, Department of Biological Chemestry, Tyumen State Medical University of the Ministry of Health of the Russian Federation E.L. Rudzevich Ph.D. (Biol.), Associate Professor, Department of Biological Chemestry, Tyumen State Medical University of the Ministry of Health of the Russian Federation

Disorders in the hemostasis system play a key role in the pathogenesis of many diseases (myocardial infarction, pulmonary embolism, atheroscle-rosis, hemorrhagic stroke) for the treatment of which a whole Arsenal of drugs (anticoagulants, antiplatelets, fibrinolytics) is used, but there is a high inci-dence of side effects and difficulties in selecting their therapeutic dose. For the correction of disorders of coagulation hemostasis in clinical practice are used as the time-tested "classic" drugs (heparin, warfarin), and Novaya oral direct anticoagulants (dabigatran, rivaroxaban), which are not devoid of side effects. At the same time, studies of natural compounds with anticoagulant activity as a basis for the creation of new drugs are continuing. The aim of the work is to divide compounds with anticoagulant activity found in nature into groups depending on their chemical structure. These compounds were divided into the following groups: polysaccharides analogues of heparin ("heparinoid"), diphenylpropanoic, derivatives of isoprene, and nitrogen-containing compounds. The mechanism of action of effectors is largely determined by the structure of molecules of active substances (quality and number of functional groups, the structure of monomers and polymers, the degree of polymerization). The sources of the first three groups of com-pounds are mainly plants, the fourth – both plants and representatives of the animal world. Each group, if possible, presents the objects of study, the chemical name of the effector and its mechanism of anticoagulant action. The obtained data contribute to the development of biochemistry and pharma-cology, as there is a prospect of creating new available effective and safe drugs.

Keywords: 
anticoagulants
heparinoids
glycoside polysaccharides
peptides

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Mestechkina V.D, Shcherbuhin, G.E. Bannikova, V.P. Cul'faty polisaharidov i ih antikoagulyantnaya aktivnost' (obzor) // Prikladnaya biohimiya i mikrobiologiya. 2010; 46(3):291–298.
  2. Kusajkin M.I., Zvyaginceva S.D., Anastyuk T.I. i dr. Fukoidany – sul'fatirovannye polisaharidy buryh vodoroslej. Struktura, fermentativnaya transformaciya i biologicheskie svoystva. Vladivostok: Izd-vo «Dal'nauka». 2014. 380 s.
  3. Lyapina M.G., Uspenskaya M.S., Majstrenko E.S. O mekhanizme antikoagulyantnogo dejstviya ehkstrakta iz kornej piona molochnocvetkovogo // Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 2016; 11:1091–1093.
  4. Ku S.K., Kim T.H., Bae J.S. Anticoagulant activities of persicarin and isorhamnetin // Vascular pharmacology. 2013; 58(4):272279.
  5. Zverev, YA.F., Kudinov A.V., Momonot A.P. i dr. Antiagregantnaya i antikoagulyantnaya aktivnost' 7–O–gentiobiozida formononetina v usloviyah in vitro i in vivo // Byulleten' sibirskoj mediciny. 2016; 15(4):30–39.
  6. Guglemone H.A., Agnese A.M., Montya S.C.N., Cabrera J.L. Anticoagulant effect and action mechanism of sulphated flavonoids from Flaveria bidentis // Thrombosis Researsh. 2002; 105(2):183188.
  7. Kemal D., Elvira E. Kovac-B., еt al. Anticoagulant activity of some Artemisia dracunculus leaf extracts // Bosnian journal of basic medical sciences. 2015; 2(15):914.
  8. Khoo L.T., Abdullah J.O., Faridah A., Mohd Tohit E.R. Bioassay-Guided Fractionation of Melastoma malabathricum Linn. Leaf Solid Phase Extraction Fraction and Its Anticoagulant Activity // Molecules. 2015; 20:3697–3715.
  9. Wang, L. Huang S., Chen B., et al. Characterization of the Anticoagulative Constitues of Angelice Siensis Radix and their metabolites in rats by HPLC-DAD-ESI-IT-TOF-MS // Planta Med. 2016. 112.
  10. Pan Y.N., Liang X.X., Niu L.Y., et al. Comparative studies of pharmacokinetics and anticoagulatory effect in rats after oral administration of Frankincense and its processed products // Ethnopharmacol. 2015; 172:118–123.
  11. Xiong L., Zheng Qi.B., Z. Li, Wang F., et al. Inhibitory Effect of Triterpenoids from Panax ginseng on Coagulation Factor X // Molecules. 2017; 22:649.
  12. Zhang G., Shen L., Xu G., et al. Diterpenoid Tanshinones, the extract from Danshen (Radix Salviae Miltiorrhizae) induced apoptosis in nine human cancer cell line // Tradit. Chin. Med. 2016; 36(4):14–21.
  13. Voroncova M.M., Turaev R.G., Kiselev S.V. i dr. Is¬sle¬dovanie vozdejstviya tioterpenoidov pinanovogo ryada na sistemu gemostaza i funkcional'nuyu aktivnost' trombocitov cheloveka // Vestnik sovremennoj klinicheskoj mediciny. 2014; 7(5):62–67.
  14. Rahmatullina A.A., Turaev R.G., Kiselyov L.V. i dr. Vli¬ya¬nie proizvodnyh kamfena na processy svyortyvaniya kro¬vi // Kazanskij medicinskij zhurnal. 2015; 96(3):455458.
  15. Pirone L., Ripoll-Rozada J., Leone M., Ronca R., Lombardo F., Fiorentino G., Andersen J.F., Pereira P.J.B., Arcà B., Pedone E.J. Functional analyses yield detailed insight into the mechanism of thrombin inhibition by the antihemostatic salivary protein cE5 from Anopheles gambiae // Biol. Chem. 2017; 292(30):1263212642.
  16. Watanabe R.M., Tanaka-Azevedo A.M., Araujo M.S., Juliano M.A., Tanaka A.S. Characterization of thrombin inhibitory mechanism of rAaTI, a Kazal-type inhibitor from Aedes aegypti with anticoagulant activity // Biochimie. 2011;93:1823.
  17. Chan T.V., Hoang A.N., Nguen Ch.T.T., Fung Ch.V., Nguen Ch.K. i dr. Nizkomolekulyarnye soedineniya s antikoagulyantnoj aktivnost'yu iz yada skorpiona Heterometrus laoticus // Doklady akademii nauk. 2017; 476(4):476–479.
  18. Shabareesh P.R.V., Kumar A., Salunke D.M., Kaur K.J. Structural and functional studies of differentially O-glycosylated analogs of a thrombin inhibitory peptide – variegin // J. Pept. Sci. 2017; 23(12):880–888.
  19. Gogoi D., Arora N., Kalita A., et al. Anticoagulant mechanism, pharmacological activity, and assessment of preclinical safety of a novel fibrin(ogen)olytic serine protease from leaves of Leucas indica // Sci Rep. 2018; 18(8,1):1–17.
  20. Kalinin E.P., Chiryat'ev E.A., Rusakova O.A., Sozonyuk A.D., SHapovalov P.Ya., Sulkarnaeva G.A. Peptidnye ingibitory svertyvaniya krovi // Medicinskaya nauka i obrazovanie Urala. 2011; 12(1):195199.
  21. Rusakova O.A. Antikoagulyanty rastitel'nogo proiskhozh¬deniya: priroda i mekhanizm dejstviya: Avtoref. diss. ... kand. biol. nauk. Tyumen'. 1993. S. 6364.
  22. Kalinin E.P., Boyarincev D.I., Galyan S.L. Poluchenie, ochistka i obshchaya harakteristika peptidnogo antikoa¬gulyanta iz sapropelya // Kazanskij medicinskij zhurnal. 2015; 96(5):824–828