CHARACTERISTICS OF SELENIUM EXCHANGE IN CHILDREN WITH CEREBRAL PALSY

DOI: https://doi.org/10.29296/25877313-2019-11-07
Download full text PDF
Issue: 
11
Year: 
2019

A.A. Tinkov Ph.D. (Med.), Research Scientist, Yaroslavl State University; Leader Research Scientist, Sechenov University (Moscow) E-mail: tinkov.a.a@gmail.com O.P. Ajsuvakova Ph.D. (Chem.), Research Scientist, Yaroslavl State University; Senior Research Scientist, Sechenov University (Moscow) E-mail: oajsuvakova@gmail.com A.P. Kuzmicheva Post-graduate Student, Yaroslavl State University E-mail: kuznetsovaap08081987@yandex.ru A.V. Skalny Dr.Sc. (Med.), Professor, Head of Laboratory, Yaroslavl State University; Head of Laboratory, Sechenov University (Moscow); Head of Department, RUDN University (Moscow) E-mail: skalny3@gmail.com

A number of studies demonstrate high risk of micronutrient disorders in children with cerebral palsy. However, the existing data on trace ele-ment status and particularly selenium are insufficient. Therefore, the objective of the present study is assessment of serum, urinary, and hair Se lev-els in children with cerebral palsy. Se levels were assessed in 52 children with cerebral palsy aged 2-8 y.o. and 52 healthy controls using inductively-coupled plasma mass spectrometry at NexION 300D (PerkinElmer, USA). The obtained data demonstrate that serum Se levels in cerebral palsy were 12% higher than the control values (0.088±0.013 vs 0.099±0.034 µg/ml; p=0.037). Oppositely, hair Se content was characterized by a 5% decrease when compared to the healthy controls (0.386 (0.308-0.498) vs 0.368 (0.250-0.467) µg/g; p = 0.042). No significant group difference in urinary Se lev-els were observed. Multiple regression analysis demonstrated that in a crude model both serum (β=0.233; p=0.017) and hair (β=-0.207; p=0.035) Se levels were significantly associated with cerebral palsy. Given a significant role of selenium in psychomotor dysfunction, personalized assessment of Se status is recommended to children with cerebral palsy in order to manage the strategies of pharmaco-nutraceutical correction of metal-ligand ho-meostasis.

Keywords: 
cerebral palsy
selenium
inductively-coupled plasma mass spectrometry
selenoprotein

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Blair E., Cans C., Sellier E. Epidemiology of the cerebral palsies. In Cerebral Palsy. Cham: Springer, 2018. R. 19-28.
  2. García C.C., Alcocer-Gamboa A., Ruiz M.P., Caballero I.M. et al. Metabolic, cardiorespiratory, and neuromuscular fitness performance in children with cerebral palsy: a comparison with healthy youth. Journal of exercise rehabilitation. 2016; 12(2):124-131.
  3. Vargus-Adams J. Health-related quality of life in childhood cerebral palsy. Archives of physical medicine and rehabilitation. 2005; 86(5):940-945.
  4. Schoendorfer N., Boyd R., Davies P.S. Micronutrient adequacy and morbidity: paucity of information in children with cerebral palsy. Nutrition reviews. 2010; 68(12):739-748.
  5. Hillesund E., Skranes J., Trygg K.U., Bøhmer T. Micronutrient status in children with cerebral palsy. Acta Paediatrica. 2007; 96(8):1195-1198.
  6. Tinkov A.A., Ajsuvakova O.P., Skalny A.V. A Case-Control Study of Essential and Toxic Trace Elements and Minerals in Hair of 0–4-Year-Old Children with Cerebral Palsy. Biological trace element research. 2019; doi 10.1007/s12011-019-01876-3 [v pechati].
  7. Bebars G.M., Afifi M.F., Mahrous D.M., Okaily N.E., Mounir S.M., Mohammed E.A. Assessment of some micronutrients serum levels in children with severe acute malnutrition with and without cerebral palsy-A follow up case control study. Clinical Nutrition Experimental. 2019; 23: 34-43.
  8. Fradejas-Villar N., Schweizer U. Selenium and Neurodevelopment. In Selenium. Cham: Springer, 2018. R. 177-192.
  9. Bräuer A.U., Savaskan N.Ε. Molecular actions of selenium in the brain: neuroprotective mechanisms of an essential trace element. Reviews in the Neurosciences. 2004; 15(1):19-32.
  10. Vinceti M., Mandrioli J., Borella P. et al. Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicology letters. 2014; 230(2): 295-303.
  11. Asmah R.H., Anyele A., Asare-Anane H. et al. Micronutrient levels and antioxidant status in pediatric cerebral palsy patients. Oxidants and Antioxidants in Medical Science. 2015; 4: 73-77.
  12. Raman A.V., Pitts M.W., Seyedali A., Hashimoto A.C. et al. Absence of selenoprotein P but not selenocysteine lyase results in severe neurological dysfunction. Genes, Brain and Behavior. 2012; 11(5): 601-613.
  13. Iwama K., Sasaki M., Hirabayashi S., Ohba C., Iwabuchi E. et al. Milder progressive cerebellar atrophy caused by biallelic SEPSECS mutations. Journal of human genetics. 2016; 61(6): 527-531.
  14. Polanska K., Krol A., Sobala W., Gromadzinska J., Brodzka R. et al. Selenium status during pregnancy and child psychomotor development - Polish Mother and Child Cohort study. Pediatric research. 2016; 79(6): 863-874.
  15. Amorós R., Murcia M., Ballester F., Broberg K. et al. Selenium status during pregnancy: Influential factors and effects on neuropsychological development among Spanish infants. Science of the Total Environment. 2018; 610: 741-749.
  16. Cardoso B.R., Hare D.J., Bush A.I. The Role of Selenium in Neurodegenerative Diseases. In Biometals in Neurodegenerative Diseases. Academic Press, 2017. R. 35-49.
  17. EHlektronnyj resurs: https:// lifebio.wiki›ресвератрол.
  18. Baraboj V.A. Fenol'nye soedineniya vinogradnoj lozy: struktura, antioksidantnaya aktivnost', primenenie // Biotechnologia Acta. 2009. T. 2. № 2. S. 6769.
  19. Moiseeva A.M., ZHeleznyak N.V., Generalova A.G., Moiseev D.V. Fitoaleksin resveratrol: metody opredeleniya, mekhanizmy dejstviya, perspektivy klinicheskogo primeneniya // Vestnik farmacii. 2012. № 1(55). S. 6373.