Download full text PDF

A.A. Tinkov Ph.D. (Med.), Research Scientist, Yaroslavl State University; Leader Research Scientist, Sechenov University (Moscow) E-mail: O.P. Ajsuvakova Ph.D. (Chem.), Research Scientist, Yaroslavl State University; Senior Research Scientist, Sechenov University (Moscow) E-mail: A.P. Kuzmicheva Post-graduate Student, Yaroslavl State University E-mail: A.V. Skalny Dr.Sc. (Med.), Professor, Head of Laboratory, Yaroslavl State University; Head of Laboratory, Sechenov University (Moscow); Head of Department, RUDN University (Moscow) E-mail:

A number of studies demonstrate high risk of micronutrient disorders in children with cerebral palsy. However, the existing data on trace ele-ment status and particularly selenium are insufficient. Therefore, the objective of the present study is assessment of serum, urinary, and hair Se lev-els in children with cerebral palsy. Se levels were assessed in 52 children with cerebral palsy aged 2-8 y.o. and 52 healthy controls using inductively-coupled plasma mass spectrometry at NexION 300D (PerkinElmer, USA). The obtained data demonstrate that serum Se levels in cerebral palsy were 12% higher than the control values (0.088±0.013 vs 0.099±0.034 µg/ml; p=0.037). Oppositely, hair Se content was characterized by a 5% decrease when compared to the healthy controls (0.386 (0.308-0.498) vs 0.368 (0.250-0.467) µg/g; p = 0.042). No significant group difference in urinary Se lev-els were observed. Multiple regression analysis demonstrated that in a crude model both serum (β=0.233; p=0.017) and hair (β=-0.207; p=0.035) Se levels were significantly associated with cerebral palsy. Given a significant role of selenium in psychomotor dysfunction, personalized assessment of Se status is recommended to children with cerebral palsy in order to manage the strategies of pharmaco-nutraceutical correction of metal-ligand ho-meostasis.

cerebral palsy
inductively-coupled plasma mass spectrometry

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

  1. Blair E., Cans C., Sellier E. Epidemiology of the cerebral palsies. In Cerebral Palsy. Cham: Springer, 2018. R. 19-28.
  2. García C.C., Alcocer-Gamboa A., Ruiz M.P., Caballero I.M. et al. Metabolic, cardiorespiratory, and neuromuscular fitness performance in children with cerebral palsy: a comparison with healthy youth. Journal of exercise rehabilitation. 2016; 12(2):124-131.
  3. Vargus-Adams J. Health-related quality of life in childhood cerebral palsy. Archives of physical medicine and rehabilitation. 2005; 86(5):940-945.
  4. Schoendorfer N., Boyd R., Davies P.S. Micronutrient adequacy and morbidity: paucity of information in children with cerebral palsy. Nutrition reviews. 2010; 68(12):739-748.
  5. Hillesund E., Skranes J., Trygg K.U., Bøhmer T. Micronutrient status in children with cerebral palsy. Acta Paediatrica. 2007; 96(8):1195-1198.
  6. Tinkov A.A., Ajsuvakova O.P., Skalny A.V. A Case-Control Study of Essential and Toxic Trace Elements and Minerals in Hair of 0–4-Year-Old Children with Cerebral Palsy. Biological trace element research. 2019; doi 10.1007/s12011-019-01876-3 [v pechati].
  7. Bebars G.M., Afifi M.F., Mahrous D.M., Okaily N.E., Mounir S.M., Mohammed E.A. Assessment of some micronutrients serum levels in children with severe acute malnutrition with and without cerebral palsy-A follow up case control study. Clinical Nutrition Experimental. 2019; 23: 34-43.
  8. Fradejas-Villar N., Schweizer U. Selenium and Neurodevelopment. In Selenium. Cham: Springer, 2018. R. 177-192.
  9. Bräuer A.U., Savaskan N.Ε. Molecular actions of selenium in the brain: neuroprotective mechanisms of an essential trace element. Reviews in the Neurosciences. 2004; 15(1):19-32.
  10. Vinceti M., Mandrioli J., Borella P. et al. Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicology letters. 2014; 230(2): 295-303.
  11. Asmah R.H., Anyele A., Asare-Anane H. et al. Micronutrient levels and antioxidant status in pediatric cerebral palsy patients. Oxidants and Antioxidants in Medical Science. 2015; 4: 73-77.
  12. Raman A.V., Pitts M.W., Seyedali A., Hashimoto A.C. et al. Absence of selenoprotein P but not selenocysteine lyase results in severe neurological dysfunction. Genes, Brain and Behavior. 2012; 11(5): 601-613.
  13. Iwama K., Sasaki M., Hirabayashi S., Ohba C., Iwabuchi E. et al. Milder progressive cerebellar atrophy caused by biallelic SEPSECS mutations. Journal of human genetics. 2016; 61(6): 527-531.
  14. Polanska K., Krol A., Sobala W., Gromadzinska J., Brodzka R. et al. Selenium status during pregnancy and child psychomotor development - Polish Mother and Child Cohort study. Pediatric research. 2016; 79(6): 863-874.
  15. Amorós R., Murcia M., Ballester F., Broberg K. et al. Selenium status during pregnancy: Influential factors and effects on neuropsychological development among Spanish infants. Science of the Total Environment. 2018; 610: 741-749.
  16. Cardoso B.R., Hare D.J., Bush A.I. The Role of Selenium in Neurodegenerative Diseases. In Biometals in Neurodegenerative Diseases. Academic Press, 2017. R. 35-49.
  17. EHlektronnyj resurs: https://›ресвератрол.
  18. Baraboj V.A. Fenol'nye soedineniya vinogradnoj lozy: struktura, antioksidantnaya aktivnost', primenenie // Biotechnologia Acta. 2009. T. 2. № 2. S. 6769.
  19. Moiseeva A.M., ZHeleznyak N.V., Generalova A.G., Moiseev D.V. Fitoaleksin resveratrol: metody opredeleniya, mekhanizmy dejstviya, perspektivy klinicheskogo primeneniya // Vestnik farmacii. 2012. № 1(55). S. 6373.