Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

INFLUENCE 3-FORMYLCHROMONE DERIVATIVES IN VITRO AT AGGREGATION OF Β-AMYLOID PLAGUES AND TYROSINASE ACTIVITY

DOI: https://doi.org/10.29296/25877313-2021-01-02
Download full text PDF
Issue: 
1
Year: 
2021

D.I. Pozdnyakov Ph.D. (Pharm.), Head of Living System Laboratory, Associate Professor, Department of Pharmacology with Clinical Pharmacology Course, Pyatigorsk Medical-Pharmaceutical Institute E-mail: pozdniackow.dmitry@yandex.ru V.M. Rukovitsyna Post-graduate Student, Department of Organic Chemistry, Pyatigorsk Medical-Pharmaceutical Institute E-mail: rukovicina.vika@mail.ru M.V. Larskij Ph.D. (Pharm.), Head of Pharmaceutical Chemistry Department, Pyatigorsk Medical and Pharmaceutical Institute E-mail: pharmachemistry@mail.ru

Objectives. Alzheimer's disease is one of the most common terminal forms of dementia, characterized by a complex pathogenesis with the for-mation of amyloid plaques in the brain structures. At the same time, one of the new and promising areas of Alzheimer's disease therapy is the influ-ence on the amyloidogenic cascade. Aim of the study. In vitro to evaluate the effect of ten 3-formylchromone derivatives on the formation of β-amyloid aggregates and tyrosinase activity. Materials and methods. The effect of the studied compounds on tyrosinase activity was evaluated using the Mapunyamethod, using L-tyrosine as a substrate and kojic acid as a reference. Aggregation of amyloid plaqueswas studied spectrophotometrically in reaction with Congo red after three and six days of incubation. Results. Among the test-objects, the most significant antithyrosinase properties were found in the 6-acetyl substituted derivative of 3-formylchromone, whose IC50 value was comparable to kojic acid (32±1.913 µg/ml versus 30.2±1.599 µg/ml). Also, this compound most significant-ly inhibited the aggregation of amyloid plaques on the third day of incubation–31.0% (p

Keywords: 
Alzheimer's disease
chromone derivatives
tyrosinase
β-amyloid

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Takizawa C., Thompson P.L., van Walsem A., et al. Epidemiological and economic burden of Alzheimer's disease: a systematic literature review of data across Europe and the United States of America. J Alzheimers Dis. 2015; 43(4):1271–84. 10.3233/JAD-141134
  2. Prince M., Wimo A.,Guerchet M., Gemma Claire Ali, Yu-Tzu Wu, Matthew A. Prina. World Alzheimer Report 2015. The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends. 2015.
  3. Kerr J.S., Adriaanse B.A., Greig N.H. et al. Mitophagy and Alzheimer's Disease: Cellular and Molecular Mechanisms. Trends Neurosci. 2017;40(3):151-166. doi:10.1016/j.tins.2017.01.002
  4. Mattson M.P. Pathways towards and away from Alzheimer’s disease. Nature. 2004; 430(7000):631–639.
  5. Wang R., Tang P., Wang P., Boissy R.E., Zheng H. Regulation of tyrosinase trafficking and processing by presenilins: partial loss of function by familial Alzheimer's disease mutation. Proc Natl. Acad. Sci. USA. 2006; 103(2):-353-358. doi:10.1073/pnas.0509822102
  6. Arbor S.C., La Fontaine M., Cumbay M. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores. Yale J. Biol. Med. 2016; 89(1):5-21.
  7. Mapunya M.B., Nikolova R.V., Lall N. Melanogenesis and antityrosinase activity of selected South african plants. Evid. Based Complement Alternat. Med. 2012; 2012: 374017. doi:10.1155/2012/374017
  8. Wang W., Zhao C., Zhu D., Gong G., Du W. Inhibition of amyloid peptide fibril formation by gold-sulfur complexes. J Inorg. Biochem. 2017; 171:1-9. doi:10.1016/j.jinorgbio.2017.02.021
  9. Esquerda-Canals G., Montoliu-Gaya L.,Güell-Bosch J., Villegas S. Mouse Models of Alzheimer's Disease. J. Alzheimersju Dis. 2017; 57(4):1171-1183. doi:10.3233/JAD-170045
  10. De Biase D., Costagliola A., Pagano T.B., et al. Amyloid precursor protein, lipofuscin accumulation and expression of autophagy markers in aged bovine brain. BMC Vet. Res. 2017; 13(1):102. doi:10.1186/s12917-017-1028-1
  11. Ohm T.G., Braak H. The pigmented subpeduncular nucleus: a neuromelanin-containing nucleus in the human pontine tegmentum. Morphology and changes in Alzheimer's disease. Acta Neuropathol. 1988; 77(1):26-32. doi:10.1007/BF00688239