Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

Prospects for the use of biocatalysis in pharmacy on the example of the synthesis of luteine ethers

DOI: https://doi.org/10.29296/25877313-2021-09-01
Download full text PDF
Issue: 
9
Year: 
2021

S.V. Pechinskii Ph.D. (Pharm.), Associate Professor, Pyatigorsk Medical Pharmaceutical Institute — Branch of Volgograd State Medical University (Pyatigorsk, Russia) ORCID ID 0000-0002-9505-9990 E-mail: hplc@yandex.ru

Relevance. Individual natural compounds are promising basic structures for the production of semi-synthetic drugs with predictable activities. Carotenoids are characterized by the lability of the main pharmacophore, lipophilicity, and the presence of geometric isomers. Biocatalysts make it possible to solve synthesis problems associated with the physicochemical and structural features of natural compounds, in particular, carotenoids. The aim of the study is to demonstrate the possibility of using biocatalysis in pharmaceutical synthesis by the example of obtaining lutein esters. Material and methods. The synthesis of esters was carried out in a non-aqueous medium at a temperature of 37 С in the presence of the catalyst Novozyme 435. The structure of the esters was confirmed by 1H NMR and mass spectrometry. Results. Six new esters of lutein and benzoic, 4-methylbenzoic, phenylglycolic, 2-hydroxybenzoic, nicotinic acids and ibuprofen were synthesized, and their structure was confirmed. Conclusion. Using the example of obtaining new lutein compounds, the prospect of using biocatalysis in pharmaceutical synthesis and the fundamental possibility of obtaining esters of natural individual compounds and medicinal substances are shown.

Keywords: 
biocatalysis
lipase
Novozyme 435
lutein
benzoic acid
4-methylbenzoic acid
phenylglycolic acid
2-hydroxybenzoic acid
nicotinic acid
ibuprofen

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Erika Lucía Regner, Hebe Natalia Salvatierra, Mario Domingo Baigorí, Licia María Pera. Biomass-bound biocatalysts for bio-diesel production: Tuning a lipolyticactivity from Aspergillus niger MYA 135 by submerged fermentation using agro-industrial raw materials and waste products.
  2. Biomass and Bioenergy. 2019; 120: 59–67. doi.org/-10.1016/j.biombioe.2018.11.005.
  3. Mohadese Babaki, Maryam Yousefi, Zohreh Habibi, Mehdi Mo-hammadi, Parisa Yousefi, et al. Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents. Renewable Energy. 2016; 9:196–206. doi: 10.1016/j.renene.2016.01.053.
  4. Rozzell D., Lalonde J. Enzymatic Processes for the Production of Pharmaceutical Intermediates. In: Wu-Kuang Yeh, Hsiu-Chiung Yang, James R. McCarthy, editors. Enzyme Technologies: Meta-genomics, Evolution, Biocatalysis, and Biosynthesis. USA: John Wiley & Sons, Inc. 2010; 185–198.
  5. Liu Y., Huang L., Fu Y., Zheng D., Ma J., et al. A novel process for phosphatidylserine production using a Pichia pastoris whole-cell biocatalyst with overexpression of phospholipase D from Strepto-myces halstedii in a purely aqueous system. Food Chemistry. 2019; 274:535–42. doi: 10.1016/-j.foodchem.2018.08.105.
  6. Bilal M., Iqbal H.M.N., Guo S., Hu H., Wang W., Zhang X. State-of-the-art protein engineering approaches using biological macro-molecules: A review from immobilization to implementation view point. Int. J. Biol. Macromol. 2018; 108:893–901. doi: 10.1016/j.ijbiomac.2017.10.182.
  7. Choi J.M., Han S.S., Kim H.S. Industrial applications of enzyme biocatalysis: Current status and future aspects. Bio-technol. Adv. 2015; 33(7):1443–54. doi: 10.1016/j.biotechadv.2015.02.014.
  8. Victoria Giorgi, Michel Chaves, Pilar Menéndez, Carlos García Carnelli. Bioprospecting of whole-cell biocatalysts for cholesterol biotransformation. World J. Microbiol Biotechnol. 2019; 35(1):12. doi.org/10.1007/s11274-018-2586-5
  9. Geoffrey A. Behrens, Anke Hummel, Santosh K. Padhi, Sebastian Schatzle, Uwe T. Bornscheuer discovery and protein engineering of biocatalysts for organic synthesis. Adv. Synth. Catal. 2011; 353:2191–2215. doi.org/10.1002/adsc. 201100446.
  10. Caner Tozlu, Engin Şahin, Hüseyin Serencam, Enes Dertli. Pro-duction of enantiomerically enriched chiral carbinols using Weissel-la paramesenteroides as a novel whole cell biocatalyst. Biocatalysis and Biotransformation. 2019; 37(5):388–98. doi.org/10.1080/10242422.2019.1568416.
  11. Bernala C., Rodrígueza K., Martínez R. Integrating enzyme immo-bilization and protein engineering: An alternativepath for the devel-opment of novel and improved industrial biocatalysts. Biotechnolo-gy Advances. 2018; 36(5):1–10. doi: 10.1016/j.biotechadv.2018.06.002.
  12. Woodyer Ryan, van der Donk Wilfred A., Zhao Huimin. Optimizing a Biocatalyst for Improved NAD(P)H Regeneration: Directed Evo-lution of Phosphite Dehydrogenase. Combinatorial Chemistry & High Throughput Screening. 2006; 9: 237–45. doi: 10.2174/138620706776843246.
  13. Sheldon Roger A., Woodley John M. Role of Biocatalysis in Sus-tainable Chemistry Chem. Rev. 2018; 118(2): 801–38. doi.org/10.1021/acs.chemrev.7b00203.
  14. Nur Royhaila Mohamad, Nur Haziqah Che Marzuki, Nor Aziah Buang, Fahrul Huyop, Roswanira Abdul Wahab. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology & Biotechno-logical Equipment. 2015; 29(2):205–20. doi: 10.1080/13102818.2015.1008192.
  15. Secundo F. Conformational changes of enzymes upon immobilisa-tion. Chem. Soc. Rev. 2013; 42(15):6250–61. doi: 10.1039/c3cs35495d.
  16. Pollard David J., Woodley John M. Biocatalysis for phar-maceutical intermediates: the future is now. TRENDS in
  17. Biotechnology. 2006; 25(2):66–73. doi: 10.1016/-j.tibtech.2006.12.005.
  18. Rouchi A. Maureen. As pharmaceutical companies face bleak pro-spects, their suppliers diligently tend the fertile fields of chiral chemistry in varied ways. Chem. Eng. News. 2002; 80(23):43–50. doi.org/10.1021/cen-v080n023.p043.
  19. Patent 2702005 Rossijskaja Federatsija, MPK S07S 57/46 (2006.01), S07S 57/48 (2006.01), S07D 213/127 (2006.01), S07D 213/55 (2006.01), S07D 213/60 (2006.01), S07D 213/65 (2006.01). Sintez polusinteticheskih proizvodnyh prirodnyh ljuteina i astaksantina: №201845080: zajavl.18.12.2018 : opubl. 03.103.2019 / Pechinskij S.V., Kuregjan A.G. Stepanova E.F. 2 s. [Patent 2702005 Rossijskaja Federacija, MPK S07S 57/46 (2006.01), S07S 57/48 (2006.01), S07D 213/127 (2006.01), S07D 213/55 (2006.01), S07D 213/60 (2006.01), S07D 213/65 (2006.01). Sintez polusinteticheskih proizvodnyh prirodnyh ljuteina i astaksantina: №201845080: zajavl.18.12.2018 : opubl. 03.103.2019 / Pechinskij S.V., Kuregjan A.G. Stepanova Je.F. 2 s. (In Russ.)].
  20. Stepanova E.F., Kuregjan A.G., Pechinskij S.V., Zhidko-
  21. va Ju.Ju. Vydelenie biologicheski aktivnyh veschestv iz rasti-tel'nyh ob'ektov v voenno-polevoj tehnologii lekarstvennyh sredstv na primere krapivy dvudomnoj (Urtica dioica L.). Vestnik Rossijskoj voenno-meditsinskoj akademii. 2017; №3(59): 134–139 [Stepanova Je.F., Kuregjan A.G., Pechinskij S.V., Zhidkova Ju.Ju. Vydelenie biologicheski aktivnyh veshhestv iz rastitel'nyh ob’ektov v voenno-polevoj tehnologii le-karstvennyh sredstv na primere krapivy dvudomnoj (Urtica dioica L.). Vestnik Rossijskoj voenno-medicinskoj akademii. 2017; №3(59): 134–139 (In Russ.)].
  22. Gosudarstvennyj reestr lekarstvennyh sredstv: ofitsial'nyj sajt. Moskva. URL: http://grls.rosminzdrav.ru [Gosudarstvennyj reestr lekarstvennyh sredstv: oficial'nyj sajt. Moskva. URL: http://grls.rosminzdrav.ru (In Russ.)].
  23. World Health Organization, global website: https://www.who.int/selection_medicines/list/en.
  24. Garabadzhiu A.V., Galynkin V.A., Karasev M.M., Kozlov G.V., Lisitskaja T.B. Osnovnye aspekty ispol'zovanija lipaz dlja po-luchenija biodizelja (obzor). Izvestija Sankt-Peterburgskogo gosudarstvennogo tehnologicheskogo instituta (Tehnicheskogo universiteta). 2010; 7(33): 63-67. [Garabadzhiu A.V., Galynkin V.A., Karasev M.M., Kozlov G.V., Lisickaja T.B. Osnovnye aspekty ispol'zovanija li-paz dlja poluchenija biodizelja (obzor). Izvestija Sankt-Peterburgskogo gosudarstvennogo tehnolog-icheskogo in-stituta (Tehnicheskogo universiteta). 2010; 7(33): 63-67 (In Russ.)].
  25. Britton G., Liaaen-Jensen S., Pfander H. Carotenoids Handbook. Basel: Springer, 2004.
  26. Boaz; Neil Warren, Clendennen, Stephanie Kay. Patent 7566795 US. Publ. Date 28.07.2009.