Перейти
на сайт журнала "Врач" |
Перейти на сайт журнала "Медицинская сестра"
|
Перейти на сайт журнала "Фармация"
|
Перейти на сайт журнала "Молекулярная медицина"
|
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
|
Microfluidic devices adapted for stem cell cultivation (review)
DOI: https://doi.org/10.29296/25877313-2021-11-01
Issue:
11
Year:
2021
Currently, microfluidic devices of various nature and filling are of great importance for research in the field of molecular biology, neurobiology and clini-cal medicine. Modified microfluidic analytical systems created on the basis of specialized functional elements have unique properties aimed at study-ing cellular structures and the biochemical processes occurring in them. The functional advantages of microfluidic devices include, first of all, the creation of a constant concentration gradient of reacting components, the small size of these components, the minimum consumption of reagents, the possibility of setting up high-precision experiments. Microfluidic systems also allow monitoring the state of the cellular microenvironment by simulating physiological conditions. The most promising vectors of the development of microfluidic technologies regarding the cultivation of cell cultures of various origins are analyzed. The parameters of creating 3D cellular structures are considered. The possibilities of using various microfluidic systems with respect to cell lines of various origins are investigated in order to study their functioning and identify certain patterns of development. The review summarizes the methods of culturing cell cultures of other origin using microfluidic technologies, namely: experiments related to modeling liver, kidney, tooth pulp cells, muscle or cartilage tissue
Keywords:
microfluidic technologies
cell cultures
stem cells
References:
- Bragheri F., Martínez Vázquez R., Osellame R. Three-Dimensional Microfabrication Using Two-Photon Polymerization. Microfluidics. 2020; 493–526. doi:10.1016/b978-0-12-817827-0.00057-6.
- Spirov A.V. Podhody mikrofljuidiki v sovremennoj biologii razvitija. Ontogenez. 2018; 49(3): 165–180 (Spirov A.V. Podhody mikrofljuidiki v sovremennoj biologii razvitija. Ontogenez. 2018; 49(3): 165–180).
- Gale B.K., A.R. Jafek, Lambert C.J., Goenner B.L., Moghimifam H., Nze U.C. Kamarapu S.K. A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Pro-spects. Inventions. 2018; 3(60).
- Hansen C.L., Skordalakes E., Berger J.M., Quake S.R. A robust and scalable microfluidic metering method that allows protein crys-tal growth by free interface diffusion. Proc. Natl. Acad. Sci. USA. .2002; 99: 16531–16536.
- Takayama S., Ostuni E., LeDuc P., Naruse K., Ingber D.E., White-sides G.M. Subcellular positioning of small molecules. Nature. 2001; 411: 1016.
- Son J., Samuel R., Gale B.K., Carrell D.T., Hotaling J.M. Separa-tion of sperm cells from samples containing high concentrations of white blood cells using a spiral channel. Biomicrofluidics. 2017; 11; 054106.
- Jafek A.R., Harbertson, S., Brady H.; Samuel R., Gale B.K. In-strumentation for xPCR Incorporating qPCR and HRMA. Anal. Chem. 2018; 90: 7190–7196.
- Xia Y., Whitesides G.M. Soft Lithography. Annu. Rev. Mater. Sci. 1998; 28: 153–184.
- Pfohl T., Mugele F., Seemann R., Herminghaus S. Trends in Mi-crofluidics with Complex Fluids. Chem Phys Chem. 2003; 4(12): 1291–1298. doi:10.1002/cphc.200300847.
- Halldorsson S., Gómez-Sjöberg R., Lucumi E., Fleming R. Ad-vantages and challenges of microfluidic cell culture in polydime-thylsiloxane devices. Biosens. Bioelectron. 2015; 63: 218–231.
- Glushkova E.G., Maksimova E.S., Ivanova Ju.A., Glushkov V.S. Modelirovanie gemodinamicheskih protsessov v mikrotsir-kuljatornom rusle s pomosch'ju mikrofljuidnyh ustrojstv. Meditsinskaja nauka i obrazovanie Urala. 2020; 1: 140–144 (Glushkova E.G., Maksimova E.S., Ivanova Ju.A., Glushkov V.S. Modelirovanie gemodinamicheskih processov v mikro-cirkuljatornom rusle s pomoshh'ju mikrofljuidnyh ustrojstv. Medicinskaja nauka i obrazovanie Urala. 2020; 1: 140–144).
- Bain G., Kitchens D., Yao M., Huettner J.E., Gottlieb D.I. Embry-onic stem cells express neuronal properties in vitro. Dev Biol. 1995; 168: 342–357.
- Vina-Almunia J., Mas-Bargues C., Borras C. et al Influence of Partial O(2) Pressure on the Adhesion, Proliferation, and
- Osteogenic Differentiation of Human Dental Pulp Stem Cells on beta-Tricalcium Phosphate Scaffold. Int. J. Oral Maxillofac. Im-plant. 2017; 32: 1251–1256.
- Chen C., Tang Q., Zhan Y., Yu M., Jing W., Tian W. Physioxia: A more effective approach for culturing human adipose-derived stem cells for cell transplantation. Stem Cell Res. Ther. 2018; 9: 148.
- Levi M., Hunt B.J. A critical appraisal of point-of-care coagulation testing in critically ill patients. J. Thromb. Haemost. 2015; 13: 1960–1967.
- Zhang C., Neelamegham S. Application of microfluidic devices in studies of thrombosis and hemostasis. Platelets. 2017; 28: 434–440.
- Cosson S., Lutolf M.P. Hydrogel microfluidics for the patterning of pluripotent stem cells. Sciecitific Report. 2014; 4(1): 4462.
- Li L., Tan D., Liu S., Jiao R., Yang X., Li F., Wu H., Huang W. Optimization of Factor Combinations for Stem Cell Differentiations on a Design-of-Experiment Microfluidic Chip. Anal. Chem. 2020; 92 (20): 14228–14235.
- Hidalgo L., Stephens P., Song B., Barrow D. Microfluidic Encap-sulation Supports Stem Cell Viability, Proliferation, and Neuronal Differentiation. Tissue Engineering Part C: Methods. 2018; 24(3): DOI:10.1089/ten.TEC.2017.0368.
- Patel B.B., Sharifi F., Stroud D.P., Montazami R., Hashemi N.N., Sakaguchi D.S. 3D Microfibrous Scaffolds Selectively Promotes Proliferation and Glial Differentiation of Adult Neural Stem Cells: A Platform to Tune Cellular Behavior in Neural Tissue Engineer-ing. Macromol Biosci. 2019; 19(2): e1800236. doi: 10.1002/mabi.201800236. Epub 2018 Nov 27.