O.L. Saybel Ph.D. (Pharm.), All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (Moscow, Russia)

Relevance. Jerusalem artichoke (Helianthus tuberosum L.), is a valuable food crop grown in many countries of the world and has multiple uses in the food industry and animal husbandry. The main raw material of Jerusalem artichoke is tubers, when harvesting the grass, as a rule, is utilized. The herb has a significant biomass and contains phenolic compounds. The aim of the study was to analyze the phenolic complex of Jerusalem artichoke herb and assess the prospects for its use as a medicinal plant material. Material and Methods. As a result of the studies carried out by HPLC-UV-MS/MS, 18 compounds related to hydroxycinnamic acids and flavonoids were identified. The dominant substances are chlorogenic, isochlorogenic A and isochlorogenic C acids. Results. Using the method of direct spectrophotometry, a method has been developed for the quantitative determination of the sum of phenolic com-pounds in terms of chlorogenic acid. The content of these compounds ranges from 4.88 ± 0.22 % to 7.47 ± 0.35 %, the accumulation is carried out mainly in the leaves. Conclusion. The highest content of chlorogenic acid is also observed in Jerusalem artichoke leaves and is 2.65 ± 0.08 %. Thus, Jerusalem artichoke herb harvested at the end of the growing season is of interest for further research and creation on pharmaceutical sub-stances. At the same time, this will make it possible to purposefully process the secondary raw materials formed during the cultivation of tubers and ensure the comprehensive use of Jerusalem artichoke.

Jerusalem artichoke
phenolic compounds
chlorogenic acid

  1. Zelenkov V.N. Topinambur: agrobiologicheskij portret i perspektivy innovacionnogo primenenija. Monografija. M.: RGAU-MSHA, 2012. 161 s.
  2. Gosudarstvennyj reestr selekcionnyh dostizhenij, dopushhennyh k ispol'zovaniju. T.1. «Sorta rastenij» (oficial'noe izdanie). M.: FGBNU «Rosinformagroteh», 2021. 719 s [Jelektronnyj resurs]. URL: (data obrashhenija 06.01.2022).
  3. Xiao Yong Ma, Li Hua Zhang, Hong Bo Shao et al. Jerusalem artichoke (Helianthus tuberosus L.) a medicinal salt-resistant plant has high adaptability and multiple-use values Journal of medicinal plantresearch. 2011; 5(8): Р. 1272-1279. Published Online
  4. Jaroshevich M.I., Vecher N.N. Topinambur (Helianthus tube-rosus L.) – perspektivnaja kul'tura mnogocelevogo ispol'zovanija. Trudy BGU. 2010; 4(2). Rezhim dostu-pa: http://www.
  5. Stimbirys A., Bartkiene E., Siugzdaite Ju., Augeniene D., Vidmantiene D., Juodeikiene G., Maruska A., Stankevicius M., Cizeikiene D. Safety and quality parameters of ready-to-cook minced pork meat products supplemented with Helianthus tuberosus L. tubers fermented by BLIS producing lactic acid bacteria. J. Food Sci. Tech-nol. 2015; 52(7): 4306–4314.
  6. Zelenkov V.N. Sredstvo lechebnoj kosmetiki, soderzhashhee jekstrakty topinambura. Patent RF № 2138247. 02.12.1997 g.
  7. Reestr izobretenij Rossijskoj Federacii [Jelektronnyj resurs]. Rezhim dostupa: registers-shheb/action?acName=clickRegister®Name=RUPAT (data obrashhenija 06.01.2022 g.).
  8. Song Y., Wi S.G., Kim H.M., Bae H.J. Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment. Bioresour echnol. 2016 Aug; 214: 3036. DOI: 10.1016/j.biortech.2016.04.065.
  9. Gunnarssona I.B., Svenssonb S.-E., Johanssonc E., Karakasheva D., Angelidakia I. Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop. Industrial Crops and Products. 2014; 56: 231240. DOI: 10.1016/j.indcrop.2014.03.010.
  10. Belousova A.L., Saenko S.A., Zjabliceva N.S. Fotohimicheskoe issledovanie travy topinambura. Materialy region. konf. po farmacii, farmakologi i podgotovke kadrov. Pjatigorsk: PjatGFA, 2001; 1213.
  11. Fujia Chen, Xiaohua Long, Zhaopu Liu, Hongbo Shao, Ling Liu. Analysis of Phenolic Acids of Jerusalem Artichoke (Helianthus tuberosus L.) Responding to Salt-Stress by Liquid Chromatography/Tandem Mass Spectrometry. Scientific World Journal. 2014; 2014: 568043. Published online 2014 Aug 5. DOI: 10.1155/2014/568043.
  12. Carazzone C., Mascherpa D., Gazzani G., Papetti A. Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chro-matography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem. 2013 Jun 1; 138(23): 1062-1071. DOI: 10.1016/j.foodchem.2012.11.060.
  13. Clifford M., Zheng W., Kuhnert N. Profiling the chlorogenic acids of aster by HPLC-MSn. Phytochemical analysis. 2006; 17(6): 384–393. DOI: 10.1002/pca.935.
  14. Jaiswal R., et al. Profiling and characterization by LC-MS n of the chlorogenic acids and hydroxycinnamoylshikimate esters in mate (Ilex paraguariensis). Journal of Agricultural and Food Chemistry. 2010; 58(9): 54715484. DOI: 10.1021/jf904537z.
  15. Jaiswal R., Kiprotich J., Kuhnert N. Determination of the hydroxycinnamate profile of 12 members of the Asteraceae family. Phytochemistry. 2011; 72(8): 781–790. DOI: 10.1016/j.phytochem.2011.02.027.
  16. Clifford M. N., Marks S., Knight S., Kuhnert N. Characterization by LC-MS n of four new classes of p-coumaric acid-containing diacyl chlorogenic acids in green coffee beans. Journal of Agricultural and Food Chemistry. 2006; 54(12): 40954101. DOI: 10.1021/jf060536p.