Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

MODELING AND DYNAMICS OF ENDOGENOUS AND EXOGENOUS OXIDATIVE STRESS IN VITRO

DOI: https://doi.org/10.29296/25877313-2022-12-02
Download full text PDF
Issue: 
12
Year: 
2022

Yu.V. Abalenikhina
Ph.D. (Biol.), Associate Professor, Ryazan State Medical University (Ryazan, Russia)
Е-mail: abalenihina88@mail.ru;
S.K. Pravkin
Ph.D. (Med.), Associate Professor, Ryazan State Medical University ( Ryazan, Russia);
A.V. Shchulkin
Dr.Sc. (Med.), Associate Professor, Ryazan State Medical University (Ryazan, Russia);
E.D. Rokunov
Student, the Faculty of Medicine, Ryazan State Medical University (Ryazan, Russia);
D.S. Nemtinov
Student, the Faculty of Medicine, Ryazan State Medical University (Ryazan, Russia);
E.P. Vasilyeva
Student, the Pediatric Faculty, Ryazan State Medical University (Ryazan, Russia);
E.N. Yakusheva
Dr.Sc. (Med.), Professor, Ryazan State Medical University (Ryazan, Russia)

Relevance. The effect of pro-oxidants on the cell can cause different effects depending on the dose and duration of exposure, therefore, adequate experimental models of oxidative stress (OS) in vitro are needed to study these processes. The aim of the study was to study the dynamics of OS development in endogenous and exogenous in vitro models. Material and methods. The study was carried out on a line of Caco-2 cells. Hydrogen peroxide (H2O2) and DL-butyonine sulfoximine (BSO) were add-ed to cells at concentrations of 0.1–100 μM s and 1–500 microns, respectively, at the confluence of 3, 24 and 72 hours. At the end of the exposure, the percentage of viable cells was determined (MTT test), the level of reactive oxygen species (MitoTracker Red CM-H2 XRos), the amount of Nrf2 and glutathione peroxidase (ELISA), the concentration of carbonyl derivatives of proteins (photometric method.) Results. H2O2 at concentrations of 5–50 μM and BSO – 10; 50; 100 μM cause an increase in the level of carbonyl derivatives of proteins, the level of transcription factor Nrf2 and antioxidant enzyme – glutathione peroxidase at exposure time of 24 and 72 hours. The concentration of H2O2 100 μM and BSO 500 μM are toxic to the Caco-2 cell line. The incubation period of 3 hours does not cause the development of OS. Conclusion. Hydrogen peroxide at concentrations of 5-50 μM, BSO – 10; 50; 100 μM and exposure time of 24 and 72 hours cause the development of compensated oxidative stress (eustress), and H2O2 at concentrations of 100 μM and BSO – 500 μM are toxic to cells of the Caco-2 line.

Keywords: 
oxidative stress
hydrogen peroxide
D
L-butyonine sulfoximine
glutathione peroxidase
Nrf-2
carbonyl derivatives of proteins

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Sies H. Introductory Remarks. Ed. Oxidative Stress, Academic Press, London, 1985; 1–8.
  2. Sies H., Cadenas E. Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci. 1985; 311: 617–631.
  3. Jones D.P. Redefining oxidative stress. Antioxid Redox Signal. 2006; 8(9-10):1865–1879.
  4. Sies Н. Oxidative Stress: Eustress and Distress in Redox Ho-meostasis Stress: Physiology. Biochemistry, and Pathology. 2019; 13: 153–163.
  5. Sies H. On the history of oxidative stress: Concept and some aspects of current development. Current Opinion in Toxicology. 2018; 7: 122–126.
  6. Itoh K., Chiba T., Takahashi S., et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response element. Biochem Biophys Res Commun. 1997; 236: 313–322.
  7. Schreck R., Albermann K., Baeuerle P.A. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukary-otic cells. Free Radic Res Commun. 1992; 17:221–237.
  8. Калинин Р.Е., Сучков И.А., Мжаванадзе Н.Д. и др. Сравнение цитотоксичности синтетических сосудистых протезов in vitro. Российский медико-биологический вестник им. академика И.П. Павлова. 2020; 28(2): 183–192.
  9. Bradford M.M. A rapid and sensitive method for the quan-titation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248–54.
  10. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biology. 2017; 11: 613–619.
  11. Smirnoff N., Arnaud D. Hydrogen peroxide metabolism and functions in plants. New Phytologist. 2019; 2: 1197–1214.