Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

ESSENTIAL OILS CONTENT IN SAGE MEDICINAL PLANTS AS AFFECTED BY ARTIFICIAL LIGHT SPECTRAL COMPOSITION

DOI: https://doi.org/10.29296/25877313-2023-06-04
Issue: 
6
Year: 
2023

A.S. Ivanitskikh
Junior Research Scientist,
Federal Scientific Agroengineering Center VIM (Moscow, Russia)
E-mail: alinena@yandex.ru
I.G. Tarakanov
Dr.Sc. (Biol.), Professor, Department of Plant Physiology, Institute of Agrobiotechnologies,
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy (Moscow, Russia)

Relevance. Sage is a valuable medicinal plant. To obtain ecologically safe products on the background of environmental pollution, as well as climatic zoning restrictions in outdoor cultivation, cultivation of plants can be organized in the controlled environment with artificial lighting. In this case, applica-tion of the light-emitting diodes (LEDs) and high-pressure sodium (HPS) lamps requires the development of special light-growing regimes ("light reci-pes"). The aim of the research. To study the effects of different spectral composition on the qualitative and quantitative composition of sage essential oil components to optimize its cultivation in the controlled environment. Material and methods. Plants of common sage (Salvia officinalis L.) variety Kubanets were grown in a vegetative experiment under controlled con-ditions with artificial lighting in the absence of natural light. HPS lamp (reference treatment), white LEDs, as well as narrow-band LEDs with radiation in red and blue regions of PAR were used in the experiment. The amount and component composition of the essential oil in the plant biomass were stud-ied by gas chromatography-mass spectrometry (GC-MS). Results. Evaluation of the qualitative and quantitative composition of sage extractive substances showed significant differences in the dynamics of component accumulation during the observation period. Thus, the content of 1,8-cineole increased from day 58 to day 110, and the content of α- and β-tuon decreased (exception: the treatment with red light). The content of camphor from day 58 to 110 decreased under all sources of irradiation. Conclusions. The qualitative and quantitative composition of the target essential oil components depends not only on the age of sage plants, but also depends on the spectral composition of light sources. Along with high operating and economic indicators of LEDs (long life, low heat dissipation, re-duced energy costs per unit of biomass), it allows to increase the profitability of the basil cropping in the controlled environment, in particular - when growing in vertical farms.

Keywords: 
sage
Salvia officinalis
essential oils
artificial lighting
LEDs
light spectral composition.

References: 
  1. Abu-Darwish M., Cabral C., Ferreira I., Gonçalves M., Cavaleiro C., Cruz M., Al-bdour T., Salgueiro L. Essential Oil of Common Sage (Salvia officinalis L.) from Jordan: Assessment of Safety in Mammalian Cells and Its Antifungal and Anti-Inflammatory Poten-tial. Biomed Res Int. 2013.
  2. Perry N., Anderson R., Brennan N., Douglas M., Heaney A., McGimpsey J., Smallfield B. Essential oils from Dalmatian sage (Salvia officinalis L.): variations among individuals, plant parts, seasons, and sites. Agric Food Chem. 1999; 47(5): 2048–2054.
  3. Croteau R., Karp F. Biosynthesis of monoterpenes: partial purifica-tion and characterization of 1,8-cineole synthetase from Salvia offic-inalis. Arch Biochem Biophys. 1977; 179(1): 257–265.
  4. Croteau R., Karp F. Biosynthesis of monoterpenes: hydrolysis of bornyl pyrophosphate, an essential step in camphor biosynthesis, and hydrolysis of geranyl pyrophosphate, the acyclic precursor of camphor, by enzymes from sage (Salvia officinalis). Arch Biochem Biophys. 1979; 198(2): 523–532.
  5. Croteau R., Karp F. Biosynthesis of monoterpenes: preliminary characterization of bornyl pyrophosphate synthetase from sage (Salvia officinalis) and demonstration that Geranyl pyrophosphate is the preferred substrate for cyclization. Arch Biochem Biophys. 1979 б; 198(2): 512–522.
  6. Figueiredo A., Barroso J., Pedro L., Scheffer J. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour and Fragrance Journal. 2008; 23(4): 213–226.
  7. Li Y., Craker Lyle E., Potter T. Effect of light level on essential oil production of Sage (Salvia officinalis) and Thyme (Thymus vulgar-is). Acta Horticulturae. 1996; 426: 419–426.
  8. Burbott A., Loomis W. Effects of light and temperature on the mon-oterpenes of peppermint. Plant Physiol. 1967; 42(1): 20–28.
  9. Коваленко Н. А., Супиченко Г. Н., Леонтьев В.Н., Шутова А.Г., Кулинчек А.И. Компонентный состав эфирного масла Sal-via officinalis L. из растительного сырья Республики Беларусь. Труды БГТУ. Серия IV. Химия, технология органических ве-ществ и биотехнология. 2010: 34–38 [Kovalenko N. A., Su-pichenko G. N., Leont'ev V.N., Shu-tova A.G., Kulinchek A.I. Komponentnyj sostav jefirno-go masla Salvia officinalis L. iz ras-titel'nogo syr'ja Respubliki Belarus'. Trudy BGTU. Serija IV. Himi-ja, tehnologija organicheskih veshhestv i biotehnologija. 2010: 34–38 (in Russ.).]
  10. Grausgruber-Groger S., Schmiderer C., Steinborn R., Novak J. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae). Journal of Plant Physiology. 2012; 169(4): 353–9.