Нажмите на эту строку чтобы перейти к Новостям сайта "Русский врач"

Перейти
на сайт
журнала
"Врач"
Перейти на сайт журнала "Медицинская сестра"
Перейти на сайт журнала "Фармация"
Перейти на сайт журнала "Молекулярная медицина"
Перейти на сайт журнала "Вопросы биологической, медицинской и фармацевтической химии"
Журнал включен в российские и международные библиотечные и реферативные базы данных

ВАК (Россия)
РИНЦ (Россия)
Эко-Вектор (Россия)

STUDY OF THE EFFECT OF MODIFICATION OF THE STRUCTURE OF A NEW DERIVATIVE OF QUINAZOLINE–4(3H)–ONE ON FATTY ACID SYNTHASE (FAS) MYCOBACTERIUM

DOI: https://doi.org/10.29296/25877313-2023-07-05
Issue: 
7
Year: 
2023

A.A. Starikova
Senior Lecturer of the Department of Chemistry of the Faculty of Pharmacy,
Astrakhan State Medical University of the Ministry of Health of Russia (Astrakhan, Russia)
e-mail: alhimik.83@mail.ru
M.A. Samotrueva
Dr.Sc. (Med.), Professor, Head of the Department of Pharmacognosy,
Pharmaceutical Technology and Biotechnology,
Astrakhan State Medical University of the Ministry of Health of Russia (Astrakhan, Russia)
E-mail: ms1506@mail.ru
N.V. Zolotareva
Ph.D. (Eng.), Associate Professor of the Department of Analytical and Physical Chemistry,
V.N. Tatishchev ASU (Astrakhan, Russia)
E-mail: zoloto.chem@mail.ru
A.A. Tsibizova
Ph.D. (Pharm.), Associate Professor of the Department of Pharmacognosy, Pharmaceutical Technology and Biotechnology,
Astrakhan State Medical University GMU of the Ministry of Health of Russia (Astrakhan, Russia)
E-mail: sasha3633@yandex.ru
D.V. Merezhkina
Post-graduate Student of the Department of Pharmaceutical and Toxicological Chemistry,
Volga State Medical University of the Ministry of Health of Russia (Volgograd, Russia)
E-mail: merezhkinad@mail.ru
A.A. Ozerov
Dr.Sc. (Chem.), Professor, Head of the Department of Pharmaceutical and Toxicological Chemistry,
Volga State Medical University of the Ministry of Health of Russia (Volgograd, Russia)
E-mail: prof_ozerov@yahoo.com

Relevance. Tuberculosis remains one of the main causes of disability and mortality from infectious diseases worldwide. The discovery of phenotypi-cally tolerant subpopulations of pathogen persisters has called into question the possibilities of known anti-tuberculosis drugs. In this connection, the search and development of new effective anti-tuberculosis drugs is an important direction in the development of modern pharmacology. Currently, it is relevant to consider substances of the quinazoline nature as antimicrobial agents that exhibit antitubercular activity. The aim of the work is computer modeling of the interaction of new derivatives of quinazoline–4(3H)–oh with NAD(H) in order to predict the possibility of influencing the fatty acid synthase (FAS) Mycobacterium. Material and methods. Modeling of intermolecular complexes in the interaction system of new derivatives of quinazoline-4(3H)–on – VMA–17–04 and VMA–13–05 with the oxidized form of NAD+ was carried out using the quantum chemical semi-empirical PM7 method implemented in the MOPAC 2016 program. Conclusions. The VMA–13–05 derivative, being in stable conformation I, forms an adduct with NAD+ having optimal energy characteristics. This inter-action can be considered as one of the stages of the biochemical pathway of suppressing the activity of FAS synthase, which takes part in the synthe-sis of mycolic acids and leads to the death of Mycobacterium cells.

Keywords: 
Mycobacterium tuberculosis
computer modeling
quinazoline derivatives
quinazolinones
fatty acid synthase
catalase–peroxidase
adduct.

References: 
  1. Rohde K.H., Sorci L. The Prospective Synergy of Antitubercular Drugs with NAD Biosynthesis Inhibitors. Frontiers in Microbiology. 2021; 11: 1–9.
  2. DOI: 10.3389/fmicb.2020.634640.
  3. Isel A. E. J., Van der leyden J., Steenakers H. Repurposing drugs derived from nucleosides and nucleotides as antibiotics and biofilm inhibitors. Journal of Antimicro-bial Chemotherapy. 2017;72(8):2156-2170. DOI: 10.1093/jac/dkx151
  4. Ratnatunga K.N., Lutsky V., K uoc A., Dolan D.L., Ed D.V., Phil M., Bel S.K., Thomson R.M. and Miles J.J. The growth of non-tuberculosis mycobacterial lung diseas-es. The front. Immunal. 2020; 11: 303. DOI: 10.3389/fimmy.20.003
  5. Gas C. Mycobacterium tuberculosis and lipids: understanding the molecular mechanisms from persistence to virulence. J. Res. Med. Sci. 2018; 23: 63.
  6. Jeffrey North E., Jackson M., E. Lee R. New approaches to targeting the pathway of mycolic acid biosynthesis for the development of anti-tuberculosis drugs. Modern Pharmaceutical Design. 2014; 20(27): 43574378.
  7. Rudraraja R.S., Daher S.S., Gallardo-Macias R., Van H., Neidich M.B., Freundlich J.S. Mycobacterium tuberculosis KasA as a drug target: structure-based inhibitor de-sign. The anterior cells infect the microbiota. 2022; 12: 1008213. DOI: 10.3389/FCIMB.2022.1008213.
  8. Jayaraman M., Rajendra S.K., Ramadas K. Structural understanding of conformational dynamics of inactive site mutations in KasA: Mycobacterium tuberculosis target protein. Gen. 2019; 720: 144082. DOI: 10.1016/j.gene.2019.144082.
  9. Wang J., Ye H., Yang H., Cai Yu., Wang S., Tan J., Sachdeva M., Qian Yu., Hu V., Leeds J.A., Yuan Yu. Discovery of new antibiotics as covalent inhibitors of fatty acid synthesis. ACS Chem Biol. 2020; 15(7): 18261834. DOI: 10.1021/acschembio.9b00982.
  10. Hassan M.R., Alsayari A.A., Fahurji B.Z., Molla M.H.R., Asseri A.H., Sumon M.A.A., Park M.N., Ahammad F., Kim B. Application of mathematical modeling and computa-tional tools in the modern process of designing and developing medicines. Molecules. 2022; 27: 4169. https://doi.org/10.3390/molecules27134169.
  11. MOPAC2016, James J., Stewart, Stewart Computational Chemistry, Colorado Springs, Colorado, Colorado, USA, http://OpenMOPAC.net (2016).