COMPARATIVE STUDY OF THE SPECTRAL CHARACTERISTICS OF -ARBUTIN AND -ARBUTIN

DOI: https://doi.org/10.29296/25877313-2019-10-02
Issue: 
10
Year: 
2019

V.A. Kurkin Dr.Sc. (Pharm.), Professor, Head of Department of Pharmacognosy with Botany and Basis of Phytotherapy, Samara State Medical University T.K. Ryazanova Ph.D. (Pharm.), Associate Professor, Department of Economics of Pharmacy, Samara State Medical University A.V. Kurkina Dr.Sc. (Pharm.), Associate Professor, Department of Pharmacognosy with Botany and Basis of Phytotherapy, Samara State Medical University S.V. Pervushkin Dr.Sc. (Pharm.), Professor, Head of Department of Pharmaceutical Technology, Samara State Medical University I.K. Petrukhina Dr.Sc. (Pharm.), Professor, Head of Department of Economics of Pharmacy, Samara State Medical University A.I. Agapov Dr.Sc. (Biol.), Professor, Head of Department of Pharmaceutical Technology, Samara State Medical University

The aim of this work is comparative study of the features of the spectral characteristics of α-arbutin and -arbutin, isolated from the leaves of the bearberry [Arctostaphylos uva-ursi (L.) Spreng.] Arbutin is the main biologically active compound of the leaves of the bearberry [Arctostaphylos uva-ursi (L.) Spreng., the family Ericaceae], common cowberry (Vaccinium vitis-idaea L.), as well as in several other plants, causing the diuretic and anti-inflammatory properties of pharmaceuti-cals on the basis of the above raw materials. Arbutin is widely used in pharmaceutical analysis of the leaves of Arctostaphylos uva-ursi and Vaccinium vitis-idaea, as well as drugs based on this raw material as a standard substance. From the Arctostaphylos uva-ursi leaves there were isolated and char-acterized α-arbutin (1-O-α-D-glucopyranoside of hydroquinone and arbutin (1-O--D-glucopyranoside of hydroquinone) using the 1H-NMR-, 13C-NMR-, UV-spectroscopy and mass spectrometry. In the comparative plan the features of the spectral characteristics of α-arbutin and -arbutin, and also their pentaacetates received as a result of acetylation by acetic anhydride in the presence of pyridine were studied. It was determined that for the identification of α-arbutin and -arbutin the data of 1H-NMR-spectroscopy are of fundamental importance. The principal difference in the 1H-NMR spectra of α-arbutin and -arbutin are the values of the coupling constant and the value of the chemical shift of the anomeric proton of glucose (C-11). In addition, in the 1H-NMR spectrum of α-arbutin there has the singlet signal of the proton of the phenolic OH-group at 9.02 ppm, whereas in the 1H-NMR spectrum of -arbutin this signal is absent. Consequently, one of the most important characteristics in terms of assessing the authenticity and purity of arbutin as a standard sample are the results of 1H-NMR spectroscopy.

Keywords: 
Arctostaphylos uva-ursi (L.) Spreng.
leaves
α-arburin
-arbutin
arburin
pentaacetate of arbutin
NMR spectroscopy

References: 
  1. Gosudarstvennaya farmakopeya SSSR: Vyp. 2. Obshchie metody analiza. Lekarstvennoe rastitel'noe syr'e, MZ SSSR. 11-e izd., dop. M.: Medicina. 1990.
  2. Gosudarstvennaya farmakopeya Rossijskoj Federacii. XIV izdanie. T. 4. M. 2018 / http://femb.ru/femb/pharmacopea.php.
  3. Kurkin V.A. Farmakognoziya. Izd. 3-e, pererab. i dop. Samara: OOO «Ofort»; FGBOU VO SamGMU Minzdrava Rossii. 2016. 1279 s.
  4. Rastitel'nye resursy SSSR. Cvetkovye rasteniya, ih himicheskij sostav, ispol'zovanie. Semejstva Paeoniaceae - Thymelaeaceae, L.: Nauka. 1985. 336 s.
  5. Rastitel'nye resursy Rossii: Dikorastushchie cvetkovye rasteniya, ih komponentnyj sostav i biologicheskaya aktivnost'. T. 2. Semejstva Actinidiaceae – Malvaceae, Eu¬phor¬biaceae – Haloragaceae / Pod red. A.L. Budanceva. SPb; M.: Tovarishchestvo nauchnyh izdanij KMK. 2009. S. 2426.
  6. Fedoseeva L.M., Maloletkina T.S. Vydelenie nekotoryh fenol'nyh soedinenij i identifikaciya arbutina iz list'ev badana // Himiya rastitel'nogo syr'ya. 1999. № 2. S. 109111.
  7. Voloboj N.L., Butakova L.Yu., Smirnov I.V. Izuchenie antimikrobnogo dejstviya arbutina i gidrohinona v otnoshenii nekotoryh predstavitelej gramotricatel'noj flory // Himiya rastitel'nogo syr'ya. 2013. № 1. S. 179182.
  8. Voloboj N.L., Smirnov I.V., Bondarev A.A. Osobennosti mochegonnoj aktivnosti arbutina i gidrohinona // Sibirskij medicinskij zhurnal. 2012. T. 27. № 3. S. 131134.
  9. Gousiadou С., Li H-Q., Gotfredsen C.H., Jensen S.R. Iridoids in Hydrangeaceae // Biochemical Systematics and Ecology. 2016. № 64. P. 122130.
  10. Chauharn R., Rubyk K., Dwivedi J. Secondary metabolites found in Bergenia species: a compendious review // International Journal of Pharmacy and Pharmaceutical Sciences. 2013. V. 5. № 1. Р. 916.
  11. Sohretoglu D., Sakar M.K., Sabuncuoglu S.A., Ozgunes H., Sterner O. Polyphenolic constituents and antioxidant potential of Geranium stepporum Davis // Rec. Nat. Prod. 2011. V. 5. № 1. P. 2228.
  12. Mogilenko T.G., Denisenko O.N., Galyautdinov I.V. Metodika polucheniya arbutina iz nadzemnoj chasti serpuhi pyatilistnoj (Serrulata quinquefolia Bild. ex Will), in-troducirovannoj na Severnom Kavkaze // Zhurnal nauchnyh statej «Zdorov'e i obrazovanie v HKH veke». 2016. T. 18. № 8. S. 116119.
  13. Kurkin V.A., Ryazanova T.K., Platonov I.A., Pavlova L.V. Kolichestvennoe opredelenie arbutina v list'yah toloknyanki obyknovennoj // Himiya rastitel'nogo syr'ya. 2015. № 1. S. 95100.
  14. Kurkin V.A., Ryazanova T.K., Platonov I.A., Pavlova L.V. Opredelenie arbutina v list'yah brusniki obyknovennoj // Himiko-farmacevticheskij zhurnal. 2017. T. 51. № 4. S. 3437.
  15. Moiseev D.V. Kinetiki reakcii destrukcii arbutina v list'yah brusniki obyknovennoj pri hranenii v estestvennyh i stressovyh usloviyah // Kratkij nauchno-prakticheskij vestnik «Chelovek i ego zdorov'e». 2013. № 2. S. 106111.
  16. Árok R., Végh K., Alberti Á., Kéry Á. Phytochemical comparison and analysis of Bergenia crassifolia L. (Fritsch.) and Bergenia cordifolia Sternb // Eur. Chem. Bull. 2012. V. 1. № 12. P. 3134.
  17. Rychlinsk I., Nowak S. Quantitative Determination of Arbutin and Hydroquinone in Different Plant Materials by HPLC // Not. Bot. Hort. Agrobot. Cluj. 2012. V. 40. № 2. P. 109113.
  18. Panusa A., Petrucci R., Marrosu G., Multari G., Gallo F.R. UHPLC-PDA-ESI-TOF/MS metabolic profiling of Arctostaphylos pungens and Arctostaphylos uva-ursi. A com-parative study of phenolic compounds from leaf methanolic extracts // Phytochemistry. 2015. V. 115. № 1. P. 79–88.
  19. Cepanec I., Litvić M. Simple and efficient synthesis of arbutin // ARKIVOC. 2008 (ii). P. 1924.
  20. Kwiecień I., Szopa A., Madej K. Ekiert H. Arbutin production via biotransformation of hydroquinone in vitro cultures of Aronia melanocarpa (Michx.) Elliott // Acta Bionorica Polonica. 2013. V. 60. № 4. P. 865–870.
  21. Bulduk I., Şahin M.D., Şanli S. Arbutin analysis in leaves, fruit and branches of Pyrus anatolica, method optimization // Eurasian Journal of Analytical Chemistry. 2016. V. 1. № 5. P. 233244.
  22. Choi Y.H., Sertic S., Kim H.K., Wilson E.G., Michopoulos F., Lefeber A.W.M., Erkelens C., Kricun S.D.P., Verpoorte R. Classification of Ilex Species Based on Metabolomic Fingerprinting Using Nuclear Magnetic Resonance and Multivariate Data Analysis // Journal of Agricultural and Food Chemistry. 2005.
  23. № 53. P. 12371245.
  24. Pop C., Vlase L., Tamas M. Natural resources containing arbutin. Determination of arbutin in the leaves of Bergenia crassifolia (L.) Fritsch. acclimated in Romania // Not. Bot. Hort. Agrobot. Cluj. 2009. V. 37. № 1. P. 129132.
  25. Huang S.-L., Zhu Yu-L., Pan Yu.-J., Wu S.-H. Synthesis of arbutin by two-step reaction from glucose // J. Zhejiang Univ. Sci. 2004. V. 5. № 12.
  26. P. 15091511.
  27. Suau R., Cuevas A., Alpuesta V., Reid M.S. Arbutin and sucrose in the leaves of the resurrection plant Myrothamnus flabellifolia // Phytochemistry. 1991. V. 30. № 8. P. 25552556.
  28. Das N.M., Mohan R., Parthipan B.P. Isolation, purification and characterization of arbutin from Cleidion nitidum (Muell. – Arg.) Thw. ex Kurz. (Euphorbiaceae) // International Journal of Science and Research. 2016. V. 5. № 1. P. 15491554.
  29. Sugimoto K., Nishimura T., Nomura K., Sugimoto K., Kuriki T. Syntheses of arbutin-α-glycosides and a comparison of their inhibitory effects with those of α-arbutin and arbutin on human tyrosinase // Chem. Pharm. Bull. 2003. V. 51. № 7. P. 798801.
  30. Erenler R., Sen O., Aksit H., Demirtas I., Yaglioglu A.S., Elmastasa M., Telcic ˙I. Isolation and identification of chemical constituents from Origanum majorana and investigation of antiproliferative and antioxidant activities // J. Sci Food Agric., wileyonlinelibrary.com. DOI 10.1002/jsfa.7155. 2015