THE PHASE DIAGRAM OF THE BINARY MEDICINAL CONDENSED SYSTEM «KETOPROFENPHENYLBUTAZONE»; ANTIINFLAMMATORY ACTIVITY OF THE BINARY EUTECTIC SYSTEM

DOI: https://doi.org/10.29296/25877313-2019-12-03
Issue: 
12
Year: 
2019

A.N. Seryakova Assistant, Department of Chemistry of Pharmaceutical Faculty, Samara State Medical University (Samara) E-mail: seryakova_annet@mail.ru M.L. Tkachenko Ph.D. (Chem.), Associate Professor, Department of chemistry of Pharmaceutical Faculty, Samara State Medical University (Samara) E-mail: tka-mikhail@yandex.ru Y.V. Moschenskyi Dr.Sc. (Chem.), Professor, Head of Department of Radio Engineering Devices, Samara State Technical University E-mail: yvmos@yandex.ru

The data of phase equilibria of the condensed system «Ketoprofen – Phenylbutazone » are represented according to the results of measure-ments by the method of the differential scanning calorimetry (DSC) in the heating mode. It is established that the eutectic system reters to the eutec-tic systems with restricted (partial) mutual solubility in the solid state. Congruent equilibrium for this system is implemented at a ratio of 60:40% mol. (55,3:44,7% of mass.) of Ketoprofen and Phenylbutazone respectively. Melting point of the eutectic structure is 68 °C. Data shows the phase diagram of a system melting state. Preclinical tests of antiinflammatory activity were carried out on model of acute exudative inflammation (carrageenan edema of rats paw) on white outbred rats in comparative option with the use of: substances of Phenylbutazone, substance of Ketoprofen, mix of Phenylbutazone and Keto-profen in the ratio 1:1 mol. and the eutectic system «Ketoprofen — Phenylbutazone». The results of experiments showed that the anti-exudative and antiinflammatory activity of the eutectic structure is twice higher than activities of individual components and their mix 1:1 mol. in comparable doses.

Keywords: 
the differential scanning calorimetry
Phenylbutazone
Ketoprofen
the eutectic system
the phase diagram
carrageenan
anti-inflammatory activity

References: 
  1. Žalac S., Zahirul M., Khan I., Gabelica V., Tudja M., Meštrović E., Romih M. Paracetamol–propyphenazone interaction and formulation difficulties associated with eutectic formation in combination solid dosage forms. Chem. Pharm. Bull. 1999; 47:302–307.
  2. Hwang M. Bi, S.-J., Morris K.R. Mechanism of eutectic formation upon compaction and its effects on tablet properties. Thermochim. Acta. 2003; 404:213–226.
  3. Chiarella R.A., Davey R.J., Peterson M.L. Making co-crystals – the utility of ternary phase diagrams. Cryst. Growth Des. 2007; 7:1223–1226.
  4. Tkachenko M.L., Zhnyakina L.E., Moshhenskij Yu.V., Loseva M.A., Levanyuk I.A. Termicheskie issledovaniya i nekoto¬ry`e texnologicheskie svojstva trojnoj lekarstvennoj sistemy` «kofein-paracetamol-mochevina» // Farmaciya. 2008. № 2. S. 2932.
  5. Bonain A. Note au sujet de l’anesthesique local employé en oto-rhinolaryngologie sous la domination liquide de Bonain. Ann Malad Oreille Larynx. 1907; 33:216–217.
  6. Fiala Sarah, Jonesa Stuart A., Brown Marc B. A fundamental investigation into the effects of eutectic formation on transmembrane transport. International Journal of Pharmaceutics. 2010; 393:68–73.
  7. Matsuoka M., Ozawa R. Determination of solid–liquid phase equilibria of binary organic systems by differential scanning calorimetry. J. Cryst. Growth 1989; 96:96–604.
  8. Moshhenskij Yu.V. Differencial`ny`j skaniruyushhij kalorimetr DSK-500 // Pribory` i texnika e`ksperimenta. 2003. № 6. S. 143–144.
  9. Anosov V.Ya., Ozerova M.I., Fialkov Yu.Ya. Osnovy` fiziko-ximicheskogo analiza. M.: Nauka. 1976. S. 125–127.
  10. Rukovodstvom po e`ksperimental`nomu (doklinicheskomu) izucheniyu novy`x farmakologicheskix veshhestv» / Pod red. chl.-korr. RAMN prof. R.U. Xabrieva. M.: Medicina. 2005.