V.L. Beloborodov Dr.Sc. (Pharm.), Рrofessor, Department of Chemistry, Institute of Pharmacy, Sechenov First Moscow State Medical University E-mail: N.B. Demina Dr.Sc. (Pharm.), Рrofessor, Department of Pharmaceutical Technology Institute of Pharmacy, Sechenov First Moscow State Medical University E-mail: E.O. Bakhrushina Ph.D. (Pharm.), Associate Professor, Department of Pharmaceutical Technology, Institute of Pharmacy, Sechenov First Moscow State Medical University E-mail: S.A. Zolotov Director for the Production and Development of Drugs and Active Pharmaceutical Substances, LLC «AMEDART» (Moscow) E-mail: A.S. Zolotova Ph.D. (Pharm.), Head of the Laboratory of Drug Technology, LLC «Farm-Sintez Lab» (Moscow) E-mail: I.I. Krasnyuk Dr.Sc. (Pharm.), Professor, Head of Department of Pharmaceutical Technology, Institute of Pharmacy, Sechenov First Moscow State Medical University E-mail:

Efavirenz (EFV) is an antiretroviral drug used to treat type 1 immunodeficiency virus infections. In order to increase bioavailability, solid EFV formula-tions with different carriers are being developed. Purpose of the study - evaluation of the possibility of applying the IR spectroscopy method to charac-terize the authenticity of mechanical EFV mixtures and compositions with Neusilin® US2, Kollidon®VA 64, Soluplus® and Eudragit® EPO. Evaluated the possibility of applying the method of FTIR-spectroscopy for the characterization of the authenticity of the mechanical mixtures and compositions EFV with Neusilin, Kollidon, Soluplus and Eudragit. In the Attenuated Total Reflection IR-ATR-spectra, after subtraction of the excipients, it is possible to iden-tify EFV by characteristic absorption bands corresponding to stretching vibrations of N-H, C≡C, C=O, CAr–CAr and C–F bonds. Analysis of the spectra of EFV mixtures with carriers indicates the absence of structural changes at the molecular level as a result of joint processing. The application of the IR-spectroscopy ATRs technique for EFV identification in compositions and mixtures with the above carriers is informative and does not require complex sample preparation, which makes it possible to recommend it as a pharmacopoeial indicator of the «compliance» of the developed dosage forms.

eudragit. IR-spectroscopy

  1. Vrouenraets S.M., Wit F.W., van Tongeren J., Lange J.M. Efavirenz: a review. Expert Opin. Pharmacother. 2007; 8(6):851– 871.
  2. Maggiolo F., Antimicrob J. Efavirenz: a decade of clinical experience in the treatment of HIV. Chemother. 2009; 64(5):910–928.
  3. Marzolini C., Telenti A., Decosterd L.A. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS. 2001; 15(1):71–75.
  4. Chiappetta D.A., Hocht C., Sosnik A. Development and characterization of taste masked Efavirenz pellets utilizing hot melt extrusion. A Curr. HIV Res. 2002; 8(3):223–231.
  5. Zaheer A., Naveen M., Santosh M.K., Imran K. A highly concentrated and taste-improved aqueous formulation of efavirenz for a more appropriate pediatric management of the anti-HIV therapy. Intern. J. Pharmatech. 2011; 3(1):807–823.
  6. Mishra N., Mishra M., Padh H. Formulation Development and Optimization of Efavirenz Loaded SLNs and NLCs using Plackett- Burman Design and its Statistical Elucidation Int. J. Pharma Res. Health Sci. 2018; 6(2):2379–2388.
  7. Cristofoletti R., Nair A., Abrahamsson B. et. al. Biowaiver monographs for immediate release solid oral dosage forms: efavirenz. J. Pharm. Sci. 2013; 102(2):318–329.
  8. Demina N.B. Biofarmatsevtiche-skaja klassifikatsionnaja sistema kak instrument razrabotki dizajna i tehnologii lekarstvennoj formy. Razrabotka i registratsija lekarstven-nyh sredstv. 2017; 2:56–62 (Demina N.B. Biofarmacevticheskaya klassifikacionnaya sistema kak instrument razrabotki dizajna i tekhnologii lekarstvennoj formy. Razrabotka i registraciya lekar-stvennyh sredstv. 2017; 2:56–62).
  9. Fitriani L., Haqi A., Zaini E. Preparation and characterization of solid dispersion freeze-dried efavirenz – polyvinylpyrrolidone K-30. Adv. Pharm. Technol. Res. 2016; 7:105–109.
  10. da Costa M.A., Seiceira R.C., Rodrigues C.R., et al. Efavirenz dissolution enhancement : co-micronization. Pharmaceutics. 2013; 5:1–22.
  11. Sathigari S., Chadha G., Lee Y. et al. Physicochemical Characterization of Efavirenz–Cyclodextrin Inclusion Complexes. AAPS Pharm. Sci. Tech. 2009; 10(1):81–87.
  12. Chiappetta D.A., Hocht C., Taira C., Sosnik A. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability [corrected]. Nanomedicine. 2010; 5:11–23.
  13. Chiappetta D.A., Hocht C., Taira C., Sosnik A. Oral pharmacokinetics of the anti-HIV efavirenz encapsulated within polymeric micelles‏. Biomaterials. 2011; 32:2379–2387.
  14. Bharate S.S., Bharate S.B., Bajaj A.N. Incompatibilities of Pharmaceutical Excipients with Active Pharmaceutical Ingredients: A Comprehensive Review. J. Excipients Food Chem. 2010; 1(3):3–26.
  15. Chadha R., Bhandari S. Bhandari. Drug-excipient compatibility screening--role of thermoanalytical and spectroscopic techniques. J. Pharm. Biomed. Anal. 2014; 87:82–87.
  16. Prech E., Bjul'mann F., Affol'-ter K. Opredelenie stroenija organi-cheskih soedinenij. Tablitsy spek-tral'nyh dannyh M.: Mir; BINOM, 2012. S. 258–302 (Prech E., Byul'mann F., Affol'ter K. Opredelenie stroeniya organicheskih soedinenij. Tablicy spektral'nyh dannyh M.: Mir; BINOM, 2012. S. 258–302).
  17. Mishraa S., Tandonb P., Ayalac A.P. Study on the structure and vibrational spectra of efavirenz conformers using DFT: Comparison to experimental data. Spectrochim. Acta Part A 88. 2012; 116–123.
  18. Marques M.M., Rezende C.A., Lima G.C. et al. New solid forms of efavirenz: Synthesis, vibrational spectroscopy and quantum chemical calculations. J. Molec. Struct. 2017; 1137:476–484.
  19. Perold Z., Swanepoel E., Brits M. Interaction and compatibility studies of efavirenz with pharmaceutical excipients. Am. J. Pharm. Tech. Res. 2012; 2(2):272–292.
  20. Wardhana Y.W., Soewandhi S.N., Suendo V. Polymorphic properties and dissolution profile of efavirenz due to solvents recrystallization. Int. J. Sci. Res. 2018; 7(7):724–727.
  21. Chadha R., Saini A., Arora P. An insight into thermodynamic relationship between polymorphic forms of efavirenz. J. Pharm. Pharmaceut. Sci. 2011; 15(2):234–251.
  22. Ravikumar K., Sridhar B. Molecular and crystal structure of efavirenz, a potent and specific inhibitor of HIV-1 reverse transcriptase, and its monohydrate. Mol. Cryst. Liq. Cryst. 2009; 515:190–198.
  23. de Melo A.C.C., de Amorim I.F., Cirqueira M.D.L., Martins F.T. Toward Novel Solid-State Forms of the Anti-HIV Drug Efavirenz: From Low Screening Success to Cocrystals Engineering Strategies and Discov-ery of a New Polymorph. Cryst. Growth Des. 2013; 13:1558–1569.
  24. Demina N.B. Current Trends in the Development of Technologies for Matrix Formulations with Modified Release (Review). Pharm. Chem. J. 2016; 50(7):475–480.